The activities of several single units (6-10) were recorded simultaneously in the auditory cortex and in frontal cortical areas of cats and monkeys. The response properties of the single units and the interaction between them were studied. It is shown that single units in both areas may participate in prolonged processes and be involved in more than one process. Adjacent neurons need not function in unison; while some neurons are activated, others may stay inactive. The interactions among adjacent neurons are weak, and can be modulated by sensory stimulation, and by arousal and behavioral states. These properties lead us to hypothesize that information is represented in the cortex by coactivation of sets of neurons rather than by independent modulation of the single-unit firing rate. A single unit may be a member of several representing sets. Thus, each neuron may participate in more than one function and each small cortical area may contain members of several functional sets. A mechanism for computing and transmitting information, based on converging-diverging links, between neuronal sets is described and tested by simulations and analysis of experimental data.
Publications
Home » Publications » Neuronal activities related to higher brain functions–theoretical and experimental implications
Neuronal activities related to higher brain functions–theoretical and experimental implications
Authors: Vaadia E, Bergman H, Abeles M.
Year of publication: 1989
Journal: IEEE Trans Biomed Eng. 1989 Jan;36(1):25-35.
Link to publication:
Labs: