Neurons in the globus pallidus do not show correlated activity in the normal monkey, but phase-locked oscillations appear in the MPTP model of Parkinsonism

To test the mode of functional connectivity in the basal ganglia circuitry, we studied the activity of simultaneously recorded neurons in the globus pallidus (GP) of a behaving rhesus monkey. The cross-correlograms of pairs of neurons in the GP were compared with those of neurons in the thalamus and frontal cortex and to the cross-correlograms of pallidal pairs after 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment. 2. In contrast with cortical and thalamic neuronal activity, almost all pairs (n = 76/81 pairs; 93.8%, 1,629/1,651 histograms; 98.7%) of GP neurons in the normal monkey were not driven by a common input. 3. The monkey was systemically treated with MPTP until the appearance of parkinsonian signs and an intermittent 7- to 11-Hz action/postural tremor. After the MPTP treatment, many pallidal neurons (49/140; 35%) became oscillatory, and 19% (n = 31/162) of pallidal pairs had oscillatory cross-correlograms. 4. These results support the model of parallel processing in the basal ganglia of normal monkeys and suggest a breakdown of the independent activity in the parkinsonian state.

Authors: Nini A, Feingold A, Slovin H, Bergman H.
Year of publication: 1995
Journal: J Neurophysiol; 74(4):1800-5.

Link to publication:


“Working memory”