Almost every protein-coding gene undergoes pre-mRNA splicing, and the majority of these pre-mRNAs are alternatively spliced. Alternative exon usage is regulated by the transient formation of protein complexes on the pre-mRNA that typically contain heterogeneous nuclear ribonucleoproteins (hnRNPs). Here we characterize hnRNP G, a member of the hnRNP class of proteins. We show that hnRNP G is a nuclear protein that is expressed in different concentrations in various tissues and that interacts with other splicing regulatory proteins. hnRNP G is part of the supraspliceosome, where it regulates alternative splice site selection in a concentration-dependent manner. Its action on alternative exons can occur without a functional RNA-recognition motif by binding to other splicing regulatory proteins. The RNA-recognition motif of hnRNP G binds to a loose consensus sequence containing a CC(A/C) motif, and hnRNP G preferentially regulates alternative exons where this motif is clustered in close proximity. The X-chromosomally encoded hnRNP G regulates different RNAs than its Y-chromosomal paralogue RNA-binding motif protein, Y-linked (RBMY), suggesting that differences in alternative splicing, evoked by the sex-specific expression of hnRNP G and RBMY, could contribute to molecular sex differences in mammals.
Publications
Home » Publications » Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA
Heterogeneous nuclear ribonucleoprotein G regulates splice site selection by binding to CC(A/C)-rich regions in pre-mRNA
Authors: Heinrich B, Zhang Z, Raitskin O, Hiller M, Benderska N, Hartmann AM, Bracco L, Elliott D, Ben-Ari S, Soreq H, Sperling J, Sperling R, Stamm S.
Year of publication: 2009
Journal: J Biol Chem. 2009 May 22;284(21):14303-15.
Link to publication:
Labs: