Kinematic tolerance analysis

We present a general method for worst-case limit kinematic tolerance analysis: computing the range of variation in the kinematic function of a mechanism from its part tolerance specifications. The method covers fixed and multiple contact mechanisms with parametric or geometric part tolerances. We develop a new model of kinematic variation, called kinematic tolerance space, that generalizes the configuration space representation of nominal kinematic function. Kinematic tolerance space captures quantitative and qualitative variations in kinematic function due to variations in part shape and part configuration. We derive properties of kinematic tolerance space that express the relationship between the nominal kinematics of mechanisms and their kinematic variations. Using these properties, we develop a practical kinematic tolerance space computation algorithm for planar pairs with two degrees of freedom.

Authors: L. Joskowicz, E. Sacks and V. Srinivasan
Year of publication: 1997
Journal: Computer-Aided Design, Volume 29, Issue 2, Pages 147-157

Link to publication:


“Working memory”