Event Related Potentials (ERPs) are widely used to study category-selective EEG responses to visual stimuli, such as the face-selective N170 component. Typically, this is done by flashing stimuli at the point of static gaze fixation. While allowing for good experimental control, these paradigms ignore the dynamic role of eye-movements in natural vision. Fixation-related potentials (FRPs), obtained using simultaneous EEG and eye-tracking, overcome this limitation. Various studies have used FRPs to study processes such as lexical processing, target detection and attention allocation. The goal of this study was to carefully compare face-sensitive activity time-locked to an abrupt stimulus onset at fixation, with that time-locked to a self-generated fixation on a stimulus. Twelve participants participated in three experimental conditions: Free-viewing (FRPs), Cued-viewing (FRPs) and Control (ERPs). We used a multiple regression approach to disentangle overlapping activity components. Our results show that the N170 face-effect is evident for the first fixation on a stimulus, whether it follows a self-generated saccade or stimulus appearance at fixation point. The N170 face-effect has similar topography across viewing conditions, but there were major differences within each stimulus category. We ascribe these differences to an overlap of the fixation-related lambda response and the N170. We tested the plausibility of this account using dipole simulations. Finally, the N170 exhibits category-specific adaptation in free viewing. This study establishes the comparability of the free-viewing N170 face-effect with the classic event-related effect, while highlighting the importance of accounting for eye-movement related effects.