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Abstract

We study the behaviour of the Ben-Yishai hypercolumnmodel [2] under presentation
of oriented stimuli, having extended this model by including plastic a�erent (LGN to
cortex) connections. We �nd that Hebbian plasticity creates a self-organising map
and show that constraining or modifying the standard Hebb rule in a particular
way will lead to a contrast-insensitive tuning width, thus giving an explanation for
persistent orientation tuning as observed in the visual cortex. Our analytical results
con�rm those of simulations done by Von der Malsburg [4] and provide a starting
point for further analytical treatment of less restricted stimuli.

Key words: orientation tuning, self-organising map, Hebbian learning

1 Introduction

The Hubel and Wiesel (HW) model for explaining orientation-selectivity in
the primary visual cortex has been the canonical model for almost forty years.
Many features of this model have been con�rmed experimentally. However, as
early as 1982 Sclar et al. [5] have produced results on contrast-independence
of the orientation-selectivity that the HW feed-forward model fails to explain.
An elegant model for a single hypercolumn which can account for these data
has been studied by Ben-Yishai et al. [2]. It consists of the HW-type a�erent
connections from the LGN to the cortical hypercolumn in V1, with the added
feature of cortico-cortico-interactions of a Mexican hat type, i.e. short-range
excitatory and long-range inhibitory. Ben-Yishai et al. showed that the cortical
feedback sharpens the tuning and makes the tuning width less sensitive to the
contrast of the visual stimulus, in agreement with Sclar's data. The model
readily admits a mathematical analysis, making it a perfect starting point
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for further research. In the Ben-Yishai model all synapses are �xed. However,
in living mammals connections between LGN and the cortex are known to be
plastic, even after the development of orientation selectivity. We model this by
making the a�erent connections subject to Hebbian learning, so that we can
study whether Hebbian learning could account for the sustained but exible
set-up of the hypercolumn. Introducing Hebbian learning makes the system a
self-organising map, closely related to Amari's neural �eld model [1] with a
di�erent gain function (f-I-relation).

2 The model

The model describes the population rates of a hypercolumn with a circular
topology. The activity (�ring rate) of populations in the hypercolumn is de-
noted by m(�), where �; ��
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2
represents the location in the hypercol-

umn. The evolution of the population rate is ruled by the following mean-�eld
Wilson-Cowan equation:
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were the linear-threshold function [x]+, which is x for x > 0 and zero otherwise,
will be our frequency-input relation. The e�ective threshold of the population
is denoted by T and the input conductance of population � at time t is given
by I(�; t) = w(�; t) � x(t). Here x is the a�erent input coming from the LGN
and w(�; t) is the synaptic strength vector of population �. The intra-cortical
connection strengths are of the Mexican hat type J(�) = J0+J1 cos(2�) and are
�xed. The time scale is set by �f . In addition to the fast neuronal dynamics,
the model features synaptic dynamics in the LGN-cortex connections. This
process takes place on a much slower time scale. We take the adiabatic limit
and assume that the neurons have reached a stationary state m(�;x) before a
new pattern is presented:

m(�;x) =
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d�0

�
J(� � �0)m(�0;x) + I(�;x)� T

#
+

: (2)

Learning is considered to have a measurable e�ect only after the presentation
of many input patterns (batch-limit) and is of Hebbian type:
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w(�; t) = �w(�; t) +

Z
dx p(x)xm(�;x); (3)
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where p(x) is the average fraction of time a stimulus x is shown to the network.
Substituting synaptic stationarity into the neuronal stationarity condition (2),
we �nd

M(�;x) =

"Z
d�0

�
J(� � �0)M(�0;x) +

Z
dx0 p(x0)x � x0M(�;x0)� T

#
+

; (4)

a �xed point equation for the shape of the stationary activity, given stimulus
x. We will restrict ourselves to patterns x characterised by an angle �, ��

2
�

� < �
2
, thus limiting the input coming from the LGN to oriented patterns. To

�nd the solutions of (4) we do not have to specify a particular representation
of these patterns, only the inner product between two of them, which for bars
or gratings would be something like:

x(�) � x(�0) = h(�� �0) = h0 + h1 cos(2�� 2�0):

3 Results

A hypercolumn, with a one-to-one smooth mapping from angle to population
of maximum activity, satis�es M(�; �) = M(� � �). This is what we call a
perfect map solution and is the con�guration postulated in previous work
on this model. The speci�c choice for J and h allows for an easy analysis
of the existence of such a solution using only the �rst couple of its Fourier
components. One �nds a clipped cosine solution:

M(�; �) = A [cos 2(� � �)� cos 2�c]+

where A, the level of activation, and �c, the tuning width, are both functions
of J0 + h0 and J1 + h1 only. For a stability analysis of the perfect map under
neuronal dynamics, the synapses can be taken �xed and one needs to look at
the evolution of perturbations of the activity only:
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�m(�; �) = ��m(�; �) + �(M(�; �))

Z
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�
J(� � �0)�m(�0; �);

with the step function �(x) that is 1 if x > 0 and 0 otherwise. As outlined
in e.g. [3], one easily derives a set of two closed di�erential equations for the
time evolution of the uctuations, again only using the �rst couple of Fourier
components. We do not study the evolution of uctuations in the weights of
the perfect map directly but via the induced input function. We �rst calculate
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how the stationary activationM changes under the perturbations in the input
function I. Using �m = m(�; �)�M(�; �), we �nd

�m(�; �) = �(M(�; �))

(Z
d�0

�
J(� � �0)�m(�0; �) + �I(�; �)

)
:

We then evaluate how the input function reacts to this changed activation:
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�I(�; �) = ��I(�; �) +
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h(�� �0)�m(�; �0):

This coupled system is more di�cult to study, but it can be done analytically
using restricted Fourier co-e�cients

bfk(�) = �+�cZ
���c

f(�; �)�k(� � �);

where � = � for the perfect map and �0(�) = 1, �k(�) = cos 2k� for k > 0 and
�k(�) = � sin 2k� for k < 0. In restricted Fourier modes the time evolution of
I reads:
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The restriction is prescribed by the pattern � occurring in the input function
on the left hand side. In the activity on the right hand side another pattern,
�0, occurs. In order to get closed expressions in the restricted components of I,
we need to go to the Fourier dual of the pattern space as well. These Fourier
integrals are non-restricted, i.e. calculated over the full half circle [0; �[. After
a straight-forward but quite lengthy analysis, we have found three types of
instabilities of the perfect map. First, there is a rotational instability induced
by a marginally stable mode due to rotational symmetry of the system that
only shifts the tuning. Second, we �nd a amplitude instability corresponding
to uctuations that leave the tuning untouched, but send the activity level
into saturation. This is the dominant instability if the level of inhibition is too
low. Third, there exists a pattern bias instability caused by a non-zero average
input. The components of the patterns x(�) represent �ring rates of LGN-
neurons and hence have a positive average activity. The system can always
`use' this bias in the LGN patterns to form orientation-independent activity
in the cortical hypercolumn, thus unlearning the perfect map.

A bias in the input leading Hebbian learning astray is not a new phenomenon.
A well-known remedy is removing the bias of the patterns. Here this leads to
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Fig. 1. Stability of perfect map for h1 = 0:5. Below the dotted line the perfect map
is stable under neuronal dynamics, above this line the activity is unbounded. Below
the solid line the perfect map is also fully stable under modi�ed Hebbian learning.
To the left of the line J1 = 1:5 no orientation tuned (stable or unstable) solution
exists (as J1 + h1 < 2).

the modi�ed learning rule:
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w(�) = �w(�) +

Z
d�

�
(x(�)� hxi)m(�; �);

where h�i is an average over all input angles. Indeed, this modi�cation stabilises
the con�guration of the hypercolumn as studied by Ben-Yishai et al. The bias-
less patterns have no h0 component in their overlap, but the non-constant
overlap is identical to that of the original patterns, so that the new rule is a
particular limit of the old rule. Removal of the pattern-bias is here found to be
equivalent to constraining the dynamics to the hyperplane

P
iwi(�) = 0, i.e.

to keeping a balance between excitation and inhibition. This is more similar
to the constraints used in early computer simulations by Von der Malsburg
[4]. The overall majority of the input to the cortex can still be excitatory as
we ignored all synapses that are �xed on this time-scale.

4 Conclusion

Assuming Hebbian plasticity in the LGN!V1 connections we have shown an-
alytically that a stable oriention tuned hypercolumn con�guration as proposed
by Ben Yishai et al. [2] can emerge in principle. Although this con�guration is
unstable under plain Hebbian learning with weight decay, we have calculated
that removing the average LGN-activity from the learning rule, or �xing the
balance between excitatory and inhibitory connections, is enough to ensure
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the stability in a large region of parameter space. The main criticism of the
model studied here is that no natural images are presented to the network.
Although we do not need to specify the patterns very explicitly, we have taken
them from a circular manifold in the input space. Further research can be done
by extending the stability analysis to less restricted inputs.
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