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Abstract

A directed generative model for binary data using a small number
of hidden continuous units is investigated. A clipping nonlinear-
ity distinguishes the model from conventional principal components
analysis. The relationships between the correlations of the underly-
ing continuous Gaussian variables and the binary output variables
are utilized to learn the appropriate weights of the network. The
advantages of this approach are illustrated on a translationally in-
variant binary distribution and on handwritten digit images.

Introduction

Principal Components Analysis (PCA) is a widely used statistical technique for rep-
resenting data with a large number of variables [1]. It is based upon the assumption
that although the data is embedded in a high dimensional vector space, most of
the variability in the data is captured by a much lower dimensional manifold. In
particular for PCA, this manifold is described by a linear hyperplane whose char-
acteristic directions are given by the eigenvectors of the correlation matrix with
the largest eigenvalues. The success of PCA and closely related techniques such as
Factor Analysis (FA) and PCA mixtures clearly indicate that much real world data
exhibit the low dimensional manifold structure assumed by these models [2, 3, 4].

However, the linear manifold structure of PCA is not appropriate for data with bi-
nary valued variables. Binary values commonly occur in data such as computer bit
streams, black-and-white images, on-o� outputs of feature detectors, and electro-
physiological spike train data. Binary neurons also have a long history in the �eld
of neural networks, and their close association with Ising spin systems in statistical
physics led to the Hop�eld associative memory model based upon point attrac-
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Figure 1: Generative model for binary data using a small number of continuous
hidden variables.

tors [5]. The Boltzmann machine is a generalization of the Hop�eld model that
includes hidden binary spin variables. In principle, its learning algorithm enables
the Boltzmann machine to model binary data with arbitrary spin correlations [6].
Unfortunately, the computational time needed for training a Boltzmann machine
renders it impractical for most applications.

In this submission, we present a model that uses a small number of continuous
hidden variables rather than hidden binary variables to capture the variability in
binary valued data. The generative model di�ers from conventional PCA because
it incorporates a clipping nonlinearity. The resulting spin con�gurations have an
entropy related to the number of hidden variables used, and are also connected by
spin ips. The learning algorithm is particularly simple, and is related to PCA by
a scalar transformation of the correlation matrix.

Generative Model

Figure 1 shows a schematic diagram of the generative process. As in PCA, the
model assumes that the data is generated by a small number P of continuous hidden
variables xi. Each of the hidden variables are assumed to be drawn independently
from a normal distribution with unit variance:

P (xi) = exp(�x2i =2)=
p
2�: (1)

The continuous hidden variables are combined using the feedforward weights Wij ,
and the N binary output units are then calculated using the sign of the feedforward
activations:

yi =

PX
j=1

Wij xj (2)

si = sgn(yi): (3)

Since binary data is commonly obtained by thresholding, it seems reasonable that a
proper generative model should incorporate such a clipping nonlinearity. The gener-
ative process is similar to that of a sigmoidal belief network with continuous hidden
units at zero temperature. The nonlinearity will alter the relationship between the
output correlations and the weight matrix W as described below.

The real Gaussian variables yi are exactly analogous to the output variables in
conventional PCA. They lie on a linear hyperplane determined by the span of the
matrix W and their correlation matrix is given by:

Cyy =


yyT

�
= WW T : (4)



By construction, the correlation matrix Cyy has rank P which is much smaller
than the number of components N . Now consider the binary output variables
si = sgn(yi). Their correlations can be calculated from the probability distribution
of the Gaussian variables yi:

(Css)ij = hsisji =

Z Y
k

dyk P (yk) sgn(yi) sgn(yj) (5)

where

P (y) =

s
jC�1yy j
(2�)N

exp

�
�1

2
yTC�1yy y

�
(6)

and
C�1yy = lim

�!0

(WW T + �2I)�1: (7)

The integrals in Equation 5 can be done analytically, and yield the surprisingly
simple result:

(Css)ij =

�
2

�

�
sin�1

"
(Cyy)ijp

(Cyy)ii(Cyy)jj

#
: (8)

Thus, the correlations of the clipped binary variables Css are related to the corre-
lations of the corresponding Gaussian variables Cyy through the nonlinear arcsine
function. The normalization in the denominator of the arcsine argument reects the
fact that the sign function is unchanged by a scale change in the Gaussian variables.

Although the correlation matrix Css and the generating correlation matrix Cyy are
easily related through Equation 8, they have qualitatively very di�erent properties.
In general, the correlation matrix Css will no longer have the low rank structure of
Cyy. As illustrated by the translationally invariant example in the next section, the
spectrum of Css may contain a whole continuum of eigenvalues even though Cyy

has only a few nonzero eigenvalues.

PCA is typically used for dimensionality reduction of real variables; can this model
be used for compressing the binary outputs si? Although the output correlations
Css no longer display the low rank structure of the generating Cyy, a more ap-
propriate measure of data compression is the entropy of the binary output states.
Consider how many of the 2N possible binary states will be generated by the clipping
process. The equation yi =

P
j Wijxj = 0 de�nes a P � 1 dimensional hyperplane

in the P -dimensional state space of hidden variables x. This hyperplane divides
the region where si = +1 from the region where si = �1. Each of the N spin
variables will have such a dividing hyperplane in this P -dimensional state space,
and all of these hyperplanes will generically be unique. Thus, the total number of
spin con�gurations si is determined by the number of cells bounded by N dividing
hyperplanes in P dimensions. The number of such cells is approximately NP for
N >> P , a well-known result from perceptron learning [7]. To leading order for
large N , the entropy of the binary states generated by this process is then given by
S = P logN . Thus, the entropy of the spin con�gurations generated by this model
is directly proportional to the number of hidden variables P .

How is the topology of the binary spin con�gurations si related to the manifold
structure of the continuous variables yi? Each of the generated spin states is rep-
resented by a polytope cell in the P dimensional vector space of hidden variables.
Each polytope has at least P +1 neighboring polytopes which are related to it by a
single or small number of spin ips. Therefore, although the state space of binary
spin con�gurations is discrete, the continuous manifold structure of the underlying
Gaussian variables in this model is manifested as binary output con�gurations with
low entropy that are connected with small Hamming distances.
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Figure 2: Translationally invariant binary spin distribution with N = 256 units.
(a) Representative samples from the distribution. (b) Eigenvalue spectrum of Css

and Cyy.

Translationally Invariant Example

Given some arbitrary binary data, maximum likelihood may be used with this
generative model to learn the appropriate weights. However, Equation 8 suggests a
simple learning rule that is much more computationally e�cient, though it may not
estimate the density as well as maximum likelihood. First, the binary correlation
matrix Css is computed from the data. Then the empirical Css is mapped into the
appropriate Gaussian correlation matrix using the nonlinear transformation: Cyy =
sin(�Css=2). This results in a Gaussian correlation matrix where the variances of
the individual yi are �xed at unity. The weights W are then calculated using the
conventional PCA algorithm. The correlation matrix Cyy is diagonalized, and the
eigenvectors with the largest eigenvalues are used to form the columns ofW to yield
the best low rank approximation Cyy � WW T . Scaling the variables yi will result
in a correlation matrix Cyy with slightly di�erent eigenvalues but with the same
rank.

The utility of this transformation is illustrated by the following simple example.
Consider the distribution of N = 256 binary spins shown in Figure 2(a). Half of the
spins are chosen to be positive, and the location of the positive bump is arbitrary
under the periodic boundary conditions. Since the distribution is translationally
invariant, the correlations (Css)ij depend only on the relative distance between spins
ji� jj. The eigenvectors are the Fourier modes, and their eigenvalues correspond to
their overlap with a triangle wave. The eigenvalue spectrum of Css is depicted in
Figure 2(b) as sorted by their rank. In this particular case, the correlation matrix
Css has N=2 positive eigenvalues with a corresponding range of values.

Now consider the matrix Cyy = sin(�Css=2). The eigenvalues of Cyy are also shown
in Figure 2(b). In contrast to the many di�erent eigenvalues Css, the spectrum of
the Gaussian correlation matrix Cyy has only two positive eigenvalues, with all the
rest exactly equal to zero. The corresponding eigenvectors are a cosine and sine
function. The generative process can thus be understood as a linear combination
of the two eigenmodes to yield a sine function with arbitary phase. This function
is then clipped to yield the positive bump seen in the original binary distribution.
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Figure 3: (a) Eigenvalue spectrum of the correlations in handwritten images of twos.
(b) The 25 most signi�cant eigenvectors for Cyy.

In comparison with the eigenvalues of Css, the eigenvalue spectrum of Cyy makes
obvious the low rank structure of the generative process. In this case, the original
binary distribution can be constructed using only P = 2 hidden variables, whereas
it is not clear from the eigenvalues of Css what the appropriate number of modes
is. This illustrates the utility of determining the principal components from the
calculated Gaussian correlation matrix Cyy rather than working directly with the
observable binary correlation matrix Css.

Handwritten Digits Example

This model was also applied to a more complex data set. A large set of 16 � 16
black and white images of handwritten twos were taken from the US Post O�ce
digit database [8]. The pixel means and pixel correlations were directly computed
from the images. The generative model needs to be slightly modi�ed to account for
the non-zero means in the binary outputs. This is accomplished by adding �xed
biases to the Gaussian variables yi before clipping:

yi = y0i +

PX
j=1

Wij xj : (9)

The means of the binary outputs can then be related to the biases y0 through the
expression:

hsii = erf

"
y0ip

2(Cyy)ii

#
: (10)

This allows the biases to be directly computed from the observed means of the
binary variables.

Unfortunately, with non-zero biases, the relationship between the Gaussian corre-
lations Cyy and binary correlations Css is no longer the simple expression found in
Equation 8. Instead, Equation 5 gives rise to the following double integral for Css:

(Css)ij =

Z Z
dtidtjP (ti; tj)sgn(ti + y0i )sgn(tj + y0j ) (11)



Figure 4: Morphing between two di�erent instances of a handwritten two. The
original digit examples are the upper left and bottom right images in the montage.

where

P (ti; tj) / exp

(
�1

2

�
ti
tj

�T �
(Cyy)ii (Cyy)ij
(Cyy)ij (Cyy)jj

�
�1 �

ti
tj

�)
: (12)

Equation 11 can be reduced to a single Gaussian integral of a product of error
functions.

Given the empirical pixel correlations Css for the handwritten digits, the integrals
in Equation 11 are numerically solved to yield the appropriate Gaussian correlation
matrix Cyy. The correlation matrices are diagonalized and the resulting eigenvalue
spectrums are shown in Figure 3(a). The eigenvalues for Cyy again display a charac-
teristic drop that is steeper than the fallo� in the spectrum of the binary correlations
Css. The corresponding eigenvectors of Cyy with the largest positive eigenvalues
are depicted as images in Figure 3(b). These eigenmodes represent common im-
age distortions such as rotations and stretching and appear qualitatively similar to
those found by the standard PCA algorithm.

The correlation matrix Cyy also happens to contain some small negative eigenvalues.
Even though the binary correlation matrix Css is positive de�nite, the transforma-
tion in Equation 11 does not guarantee that the resulting matrix Cyy will also be
positive de�nite. The precise physical meaning of these negative eigenvalues is not
clear at this point; however, their presence indicates a shortcoming of the clipped
Gaussian generative process for modelling this particular data set.

Although the eigenvalue spectrum of Cyy exhibits a more rapid decay than Css,
as with conventional PCA there is still some freedom in choosing the number of
eigenvectors to model the data. Here a generative model with weights W composed
of the P = 25 eigenvectors shown in Figure 3(b) is used to �t the handwritten
twos. Whether this model quantitatively �ts the original digit distribution better
than conventional PCA still needs to be determined, but the utility of the nonlinear
generative model is illustrated by Figure 4. The �rst and last image in the �gure
are two distinct examples of a handwritten two, and the generative model is used to
morph between the two examples. The hidden values xi for the original images are
�rst determined using an iterative approximation, and the intermediate images in
the morph are constructed by linearly interpolating in the vector space of the hidden
units. Because of the clipping nonlinearity, this induces a nonlinear mapping in the



outputs with binary units being ipped in a particular order as determined by the
generative model. In contrast, morphing using conventional PCA would result in
a simple linear interpolation between the two images, and the intermediate images
would not look anything like the original binary distribution [9].

These examples show the value of using the clipped generative model to learn the
correlation matrix of the underlying Gaussian variables rather than using the cor-
relations of the outputs directly. The clipping nonlinearity is convenient because
the relationship between the hidden variables and the output variables is partic-
ularly easy to understand; however, this nonlinear model can also be generalized
for other types of data that is not binary in nature. The learning algorithm di�ers
from other nonlinear PCA models and autoencoders because the inverse mapping
function need not be explicitly learned [10, 11, 12]. Instead, the correlation matrix
is directly transformed from the observable variables to the underlying Gaussian
variables. The correlation matrix is then diagonalized to determine the appropriate
feedforward weights. We are currently exploring methods by which the appropri-
ate nonlinear generative function can also be adapted to yield the most e�cient
representation.
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