Israeli Human Neuroimaging 2019

Final posters list

1. Cortical Layer Parcellation in the General Population Using Inversion- Recovery MRI

Zvi Baratz¹, Omri Tomer¹, Ittai Shamir¹, Dor Kaptzon¹, Daniel Barazany¹, Assaf Horowitz¹, Maya Faraggi¹, Yaniv Assaf¹

¹Tel Aviv University, Israel.

2. Sub-voxel Estimation of Fat Infiltration in Degenerative Muscle Disorders using Multi-T2 Analysis

Jannette Nassar^{1,} Dvir Radunsky¹, Noam Omer¹, Yann Le Fur², David Bendahan², and Noam Ben-Eliezer^{1,3,4}

¹Department of Biomedical Engineering and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; ²Aix Marseille University, CNRS, CRMBM, Marseille, France; ³Center for Advanced Imaging Innovation and Research, New York University, New York, NY, USA; ⁴University, New York, NY, USA. 4Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

3. A probabilistic method for modelling cortical layer composition in sub-voxel resolution

Omri Tomer¹, Zvi Baratz¹, Ittai Shamir², Dor Kaptzon², Assaf Horowitz¹, Maya Faraggi², Daniel Barazany² and Yaniv Assaf^{1,2}

¹Sagol School of Neuroscience, ²Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University;

4. Subdividing the superior longitudinal fasciculus to its subcomponents using quantitative T1 mapping

Roey Schurr¹ Ady Zelman¹, Aviv A. Mezer¹

¹Edmond & Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Israel.

5. Modeling conduction delays in the corpus callosum using MRI-measured g-ratio

Shai Berman¹, Shir Filo¹, Aviv A. Mezer¹

¹Edmond and Lily Safra center for Brain Sciences, at the Hebrew University of Jerusalem, Jerusalem, Israel.

7. White Matter Patterns Related to Math vs. Reading Challenges in Children with Developmental Dyslexia

Noam Glukhovksy¹, Rola Farah¹, Tzipi Horowitz-Kraus¹

¹Faculty of Bio medical Engineering and Faculty of Education in Science and Technology, Technion, Israel Institute of Technology

8. qMRI grey matter microstructural changes predict healthy aging and identify Multiple Sclerosis

Asier Erramuzpe¹, Roey Schurr¹, Aviv Mezer¹

¹Hebrew University, Jerusalem, Israel

9. The Effects of Traumatic Brain injury Factors on Brain Activation During an Executive Task

Sarel Shlomo¹, Maayan Sapir¹, Leeron Rabinov¹, Niv Tik¹, Reut Raizman1, Liat Ben Ami¹, Galia Tsarfaty^{1,2}, Elena Tchvaloon³, Assia Klots³, Ofer Keren^{2,3}, Zion Zibly^{2,4}, Abigail Livnv^{1,5}

¹Division of Diagnostic Imaging, Sheba Medical Center, Tel Hashomer, Israel; ²Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; ³Head Trauma Rehabilitation Department, ⁴Department of Neurosurgery, ⁵J. Sagol Neuroscience Center, Sheba Medical Center, Tel Hashomer, Israel;

10. Neural correlates of future weight loss, a possible role for brain-gastric connectivity

Gidon Levakov^{1,2}, Alon Kaplan³, Anat Yaskolka Meir³, Ehud Rinott³, Gal Tsaba³, Hila Zelicha³, Nachshon Meiran^{2,4}, Ilan Shelef^{2,5}, Iris Shai³ & Galia Avidan^{1,2,4}

¹Department of Brain and Cognitive Sciences, ²Zlotowski Center for Neuroscience, ³Department of Epidemiology, ⁴Department of Psychology, ⁵Department of Imaging, Ben-Gurion University of the Negev, Beer-Sheva, Israel.

11. The Neural Correlates of Social Synchrony in ASD

Inbar Zvia Marton-Alper¹, Nevat Michael¹, Karklinsky Matan², Gvirts Hila³, Shamay-Tsoory Simone $.G^1$

¹University of Haifa, Israel; ²Weizmann Institute of Science, Israel; ³Ariel University, Israel.

12. Neuroanatomy of Face Recognition Memory

Shir Ben-Zvi Feldman¹, Nachum Soroker^{1,2}, Daniel A. Levy³
¹Sackler Faculty of Medicine, Tel-Aviv University, Israel; ²Lowenstein Rehabilitation
Hospital, Raanana, Israel; ³Baruch Ivcher School of Psychology, Interdisciplinary Center
Herzliya, Israel;

14. Network Representation of Persistent Visual Categories

Gal Vishne¹, Edden M. Gerber¹, Robert T. Knight², Leon Y. Deouell¹

¹The Hebrew University of Jerusalem, Israel; ²University of California, Berkeley, USA.

15. Behavioral and neural mechanisms underlying visual expertise

Nilly Weiss¹ & Galia Avidan^{1,2}

¹Department of Psychology and ²Department of Cognitive and Brain Science, Ben-Gurion university, Israel.

16. Properties of language recruitment in the congenitally deprived visual network

Benedetta Heimler^{‡1,2}, Galit Buchs^{‡1,3}, Lior Reich^{1,2}, Amir Amedi^{1,2,3}

¹Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; ²The Edmond and Lily Safra Center for Brain Research, the Hebrew University of Jerusalem, Hadassah Ein-Kerem, Jerusalem, Israel; ³Department of Cognitive Science, Faculty of Humanities, Hebrew University of Jerusalem, Israel;

17. Population Receptive Fields' Size and Complex Visual Dysfunction: a Posterior Cortical Atrophy Model

Pieter de Best¹, Noa Raz¹, Nitzan Guy², Tamir Ben-Hur³, Serge Dumoulin^{4,5,6}, Yoni Pertzov⁷, Netta Levin¹

¹Department of Neurology, the Hadassah Hebrew University Medical Center, Jerusalem, Israel; ²Department of Cognitive Sciences, the Hebrew University of Jerusalem, Israel; ³Department of Neurology, the Hadassah Hebrew University Medical Center, Jerusalem, Israel; ⁴Spinoza Center for Neuroimaging, Amsterdam, Netherlands; ⁵Department of Experimental and Applied Psychology, VU University, Amsterdam, Netherlands; ⁶Department of Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, Netherlands; ⁷Department of Psychology, the Hebrew University of Jerusalem, Israel.

18. Single Neurons in the Human STN and GPi Represent Motor and Visual Parameters

Yael Lustig $^{\ddagger 1}$, Ido Strauss $^{\ddagger 1,3}$, William D. Hutchison 4,5 , Itzhak Fried 1,3,6 , Andres M. Lozano 4 , Ariel Tankus 1,2,3

¹Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, ²Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; ³Functional Neurosurgery Unit, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; ⁴Division of Neurosurgery, Department of Surgery, ⁵Department of Physiology, Faculty of Medicine, University of Toronto, Toronto Western Hospital, Ontario, Canada; ⁶Department of Neurosurgery, David Geffen School of Medicine and Semel Institute for Neuroscience, University of California at Los Angeles (UCLA), Los Angeles, CA, USA.

19. The "creatures" of the human cortical somatosensory system

Noam Saadon-Grosman^{1,2}, Yonatan Loewenstein^{‡3,4}, Shahar Arzy^{‡1,2}

¹Neuropsychiatry Lab, Department of Neurology, Hadassah Hebrew University Medical Center, Jerusalem, Israel; ²Department of Medical Neurobiology, Faculty of Medicine, Hadassah Hebrew University Medical School, Jerusalem, Israel; ³The Edmond and Lily Safra Center for Brain Sciences and the Alexander Silberman Institute of Life Sciences, ⁴Dept. of Cognitive Sciences and The Federmann Center for the Study of Rationality, The Hebrew University, Jerusalem, Israel.

20. Alpha suppression in the somatosenseory cortex is finger specific

Nir Ofir¹, Noam Schwar¹, Kyousuke Kamada², Robert Prückl³, Christoph Guger³, & Ayelet N. Landau¹

¹Hebrew University of Jerusalem, Israel; ²Asahikawa University, Japan; ³g.tec medical engineering GmbH, Austria.

24. A Role for Amygdala-Pallidum Pathway in Human Maternal Bonding

Yoni Amir, Bradford C. Dickerson, Ciprian Catana, Lisa Feldman Barrett, & Shir Atzil

¹Department of Psychology, the Hebrew University of Jerusalem, Jerusalem Israel.

²Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown. ³Department of Psychology, Northeastern University, Boston; ⁴Yale Child Study Center, New Haven; ⁵Gonda Brain Research, ⁵Bar Ilan University,Ramat Gan, Israel. ⁶Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston.

25. Striatal signature in preference-modification training without external reinforcements

Salomon, T.¹, Botvinik-Nezer, R.^{1,2}, Oren, S.^{1,2}, and Schonberg, T.^{1,2}

¹Department of Neurobiology, Tel Aviv University; ²Sagol School of Neuroscience, Tel Aviv University

26. Neural correlates of effort-based valuation with prospective choices

Nadav Aridan¹, Nicholas J. Malece², Russell A. Poldrack^{2,3}, Tom Schonberg^{1,2,4}
¹Department of Neurobiology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; ²Imaging Research Center, The University of Texas at Austin, Austin, TX; ³Department of Psychology, Stanford University, Stanford, CA; ⁴Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.

27. Neural Markers of Spatial Attention to Speech

Dan Agmon^{‡1}, Paz Har-Shai^{‡1}, Elana Zion-Golumbic¹
¹Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Israel.

28. Neural Decoding of Concurrent Speech: Effects of Selective and Distributed Attention

Kaufman Maya¹ and Zion Golumbic Elana¹

¹Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Israel.

29. The involvement of extra-linguistic high cognitive functions in pragmatic inferences

Tal Tehan¹ & Einat Shetreet²

¹Sagol school of neuroscience, ²Department of Linguistics, Tel Aviv University.

30. Ventral-stream white matter pathways associated with performance on a morphemebased production task

Maya Yablonski¹, Benjamin Menashe^{1,2}, Michal Ben-Shachar^{1,2}

¹The Gonda Multidisciplinary Brain Research Center, ²Department of English Literature and Linquistics, Bar-Ilan University.

31. Can Morphology Compensate for Phonological Deficits in Hebrew Adults with Dyslexia? an fMRI Study

Tammar Truzman^{1,2}, Yael Weiss³, Tami Katzir⁴, & Tali Bitan^{1,5}

¹Language & Brain plasticity lab, the Institute of Information Processing and Decision Making (IIPDM); ²Dept. of Communication Sciences and Disorders, University of Haifa, Israel; ³Psychology Dept. University of Texas, Austin; ⁴Dept. of Learning Disabilities, The E.J. Safra Brain Research center for the study of Learning Disabilities, ⁵Dept. of Psychology, University of Haifa, Israel;

32. Functional connectivity of EF and visual regions during verb generation related to improved reading

Emma Twait¹ & Tzipi Horowitz-Kraus^{1,2}

¹Educational Neuroimaging Centre, Faculty of Biomedical Engineering, Faculty of Education in Science and Technology, Technion, Haifa, Israel; ²Reading and Literacy Discovery Centre, Cincinnati Children's Hospital Medical Centre, Cincinnati, Ohio, USA.

33. The role of Executive functions in reading comprehension in children with dyslexia: an fMRI study

Raya Meri¹ and Dr. Tzipi Horowitz-Kraus¹

¹Faculty of Bio medical Engineering and Faculty of Education in Science and Technology, Technion.

34. Many ways to read your vowels: The development of a Hebrew reading brain

Upasana Nathaniel¹, Bechor Barouch¹, Yael Weiss², Tami Katzir³ and Tali Bitan¹

¹Psychology Dept., IIPDM, University of Haifa, Israel; ²Psychology Dept. University of Texas at Austin, Austin, TX, US; ³Dept. of Learning Disabilities and The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.

35. Do roots compensate for missing vowels in children reading Hebrew words? Evidence from fMRI

Bechor Barouch¹, Yael Weiss², Tami Katzir³, Tali Bitan¹

¹Psychology Dept., IIPDM, University of Haifa, Israel; ²Psychology Dept. University of Texas at Austin, Austin, TX, US; ³Dept. of Learning Disabilities and The Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Israel.

36. Maternal reading ability and diffusion properties of white matter tracts in pre-school age children

Rola Farah¹, Tzipi Horowitz-Kraus¹

¹Faculty of Bio medical Engineering and Faculty of Education in Science and Technology, Technion.

37. The relations between screen-exposure and altered attentional brain activation in preschool children

Michal Zivan¹, Sapir Bar¹, Xiang Jing², and Tzipi Horowitz-Kraus^{1,3,4}

¹Educational Neuroimaging Center, Faculty of Education in Science and Technology and ²Faculty of Biomedical Engineering, Technion, Haifa Israel; ³Department of Neurology, ⁴Reading and Literacy Discovery Center, Cincinnati Children's Hospital Medical Center, Ohio, USA.

38. Mindfulness Training is related to Improved Executive Functions in Preschool Children: An EEG Study

Ilana Shlomov¹, Nava Levitt-Binnun², Tzipi Horowitz-Kraus^{1,3}

¹Educational Neuroimaging Center, Faculty of Education in Science and Technology, Faculty of Biomedical Engineering, Technion, Israel; ²MUDA Segol center for brain and mind, School of Psychology, Inter Disciplinary Center (IDC), Hertzelia; ³Reading and Literacy Discovery Center, General and Community Pediatrics, Cincinnati Children's Hospital; Medical Center, Cincinnati, Ohio, USA.

‡ = Equal contribution