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Abstracts 

 
Broadening and deepening the role of Artificial Intelligence in Computational Neuroscience 
Daniel Yamins, Stanford University 
 
Advances combining artificial intelligence techniques with computational neuroscience have 
shown that time-averaged neural responses in the primate visual and auditory systems can be 
modeled with reasonable accuracy by task-optimized deep neural networks. I'll discuss our lab's 
recent work to broaden and deepen these results, using recurrent convolutional networks to 
capture neural dynamics in the visual system. I'll also talk about attempts to plug the biggest 
hole in the task-optimized theory --- moving beyond unrealistic labelled supervision by creating 
self-supervised interactive agents that create powerful sensory representations --- and discuss 
the connection between these ideas and development.  Moving beyond sensory systems, I'll 
describe models bridging to decision-making and memory, in the context of modular continual 
learning.  Finally, I'll discuss how these results fit into the historical trajectory of AI and 
computational neuroscience, and discuss future questions of great interest that may benefit 
from a similar approach 
 
 
Old new frontiers in visual object recognition using deep learning: curriculum learning 
Daphna Weinshall, The Hebrew University 
 
The incredible recent progress in this visual object recognition, and the availability of very 
effective public domain tools for this task, allows us to reopen old questions and approach 
them from new directions with new tools. In this talk I will focus on curriculum learning, where 
a learner is exposed to examples whose difficulty level is gradually increased. This heuristic 
dominates human learning; empirically, it has also been shown to improve the outcome of 
learning in various machine learning models. Our main contribution is a theoretical result, 
showing that learning with a curriculum speeds up the rate of learning in the context of the 
regression and the hinge loss. Interestingly, we also show how curriculum learning and hard-
sample mining, although conflicting at first sight, can coexist harmoniously within the same 
theoretical model. I will show empirical results using deep CNN models for image classification, 
where curriculum learning is shown to speed up the rate of learning and improve the final 
generalization performance. In the context of human cognition, I will show how this empirical 
approach can be used to investigate related questions in perceptual learning. 
 
 



 

   

The functional neuroanatomy of face perception: from brain measurements to deep neural 
networks 
Kalanit Grill-Spector, Stanford University 
 
A central goal in neuroscience is to understand how processing within the ventral visual stream 
enables rapid and robust perception and recognition. Recent neuroscientific discoveries have 
significantly advanced understanding of the function, structure and computations along the 
ventral visual stream that serve as the infrastructure supporting this behaviour. In parallel, 
significant advances in computational models, such as hierarchical deep neural networks 
(DNNs), have brought machine performance to a level that is commensurate with human 
performance. Here, we propose a new framework using the ventral face network as a model 
system to illustrate how increasing the neural accuracy of present DNNs may allow researchers 
to test the computational benefits of the functional architecture of the human brain. Thus, we 
will (i) consider the specific neural implementational features of the ventral face network, (ii) 
describe similarities and differences between the functional architecture of the brain and 
DNNs, and (iii) provide hypotheses for the computational value of implementational features 
within the brain, which may ultimately improve DNN performance. Importantly, this new 
framework promotes the incorporation of neuroscientific findings into DNNs in order to test 
the computational benefits of fundamental organizational features of the visual system. 

Work done together with Kevin S. Weiner, Jesse Gomez, Anthony Stigliani, and Vaidehi S. Natu 
 
 
Perceptual learning in a mouse model: a progress report 
Adi Mizrahi, The Hebrew University 
 
Abstract TBA 
 
 
Decoupling gating from linearity 
Shai Shalev-Shwartz, The Hebrew University 
 
The gap between the empirical success of deep learning and the lack of strong theoretical 
guarantees calls for studying simpler models. By observing that a ReLU neuron is a product of a 
linear function with a gate (the latter determines whether the neuron is active or not), where 
both 
share a jointly trained weight vector, we propose to decouple the two. We introduce GaLU 
networks --- networks in which each neuron is a product of a Linear Unit, defined by a weight 
vector which is being trained, with a Gate, defined by a different weight vector which is not 
being trained.  Generally speaking, given a base model and a simpler version of it, the two 
parameters that determine the quality of the simpler version are whether its practical 
performance is close enough to the base model and whether it is easier to analyze it 
theoretically. We show that GaLU networks perform similarly to ReLU networks on standard 
datasets and we initiate a study of their theoretical properties, demonstrating that they are 



 

   

indeed easier to analyze. We believe that further research of GaLU networks may be fruitful for 
the development of a theory of deep learning. 
 
Joint work with Jonathan Fiat and Eran Malach. 
 
 
High-dimensional dynamics of generalization error in neural networks: implications for 
experience replay 
Andrew Saxe, University of Oxford 
 
Learning even a simple task can engage huge numbers of neurons across the cortical hierarchy. 
How do neuronal networks manage to generalize from a small number of examples, despite 
having large numbers of tunable synapses? And how does depth—the serial propagation of 
signals through layered structure—impact a learning system? I will describe results emerging 
from the analysis of deep linear neural networks. Deep linear networks are a simple model class 
that retain many features of the full nonlinear setting, including a nonconvex error surface and 
nonlinear learning trajectories. In this talk I will focus on their generalization error, using 
random matrix theory to analyze the cognitively-relevant "high-dimensional" regime, where the 
number of training examples is on the order of or even less than the number of adjustable 
synapses. Consistent with the striking performance of very large deep network models in 
practice, I show that good generalization is possible in overcomplete networks due to implicit 
regularization in the dynamics of gradient descent. Overtraining is worst at intermediate 
network sizes, when the effective number of free parameters equals the number of samples, 
and can be reduced by making a network smaller or larger. I identify two novel phenomena 
underlying this behavior in linear networks: first, there is a frozen subspace of the weights in 
which no learning occurs under gradient descent; and second, the statistical properties of the 
high-dimensional regime yield better-conditioned input correlations which protect against 
overtraining. Turning to the impact of depth, the theory reveals a trade-off between training 
speed and generalization performance in deep neural networks, and I confirm this speed-
accuracy trade-off through simulations. Finally, I will describe an application of these results to 
experience replay during sleep. The consolidation of learning during sleep is thought to arise 
from the replay of stored experiences between hippocampus and neocortex. Why is this 
complex strategy beneficial? As a simple model of this process, we compare the dynamics 
arising from online learning, in which each example is used once and discarded; and batch 
learning, in which all examples are stored (for instance, in hippocampus) and replayed 
repeatedly (for instance, during sleep). While these two strategies yield similar performance 
when training experience is abundant, we find that replay can be decisively better when 
training experience is scarce. Our results suggest a normative explanation for a two-stage 
memory system: replay can enable better generalization from limited training experience. 
 
 
 
 



 

   

The computational benefit of the hidden layers in Deep Neural Networks 
Naftali Tishby, The Hebrew University 
 
The Information Bottleneck Theory of Deep Learning has three interesting predictions: 
1. The layers of Deep Neural Networks (or brains), if achieve good generalization on a specific 
task by ANY training algorithm, should lie close to the Information Bottleneck limit for this task 
with effectively compressed representations of the input patterns. 
2. Most of the improvement in generalization is achieved through diffusion in the irrelevant 
directions in the weight space, which amounts to reduction of the signal to noise ration of the 
irrelevant features of the data and lead to the hierarchically compressed representations the 
input by the layers. 
3. This compression by diffusion leads to dramatic boost of the optimization (training) time with 
the number of layers: more layers can achieve good generalization much faster. 
 
In this talk I will present new rigorous arguments and experimental results that confirm these 
predictions. In particular, I will prove that the computational benefit of the hidden layers scales 
as a power law in the number of layers, with exponent that depends on the Stochastic Gradient 
Decent (SGD) diffusion exponent and on the efficiency of the different representations of the 
layers. This power law scaling in the number of layers can become an exponential boost in cases 
of ultra slow diffusion of the SGD, as reported by others.  
 
 
Three puzzles in the theory of deep learning  
Tomaso Poggio, MIT 
  
In recent years, machine learning researchers has achieved impressive results. Though theory 
has been lagging behind, some of the main questions about deep learning are now being 
solved. I will review the state of three main puzzles which include 3 separate branches of 
mathematics, that is approximation, optimization and machine learning theory:  
• Approximation Theory: When and why are deep networks, with many layers of neurons, 
better than shallow networks which correspond to older machine learning techniques? When 
can they avoid the curse of dimensionality?  
• Optimization: Why is it easy to train a deep network and often achieve global minima of the 
empirical loss?  
• Learning Theory: How can deep learning avoid overfit and predict well for new data despite 
overparametrization? Do deep networks generalize according to classical theory?  
I will also discuss the future of AI. To create artifacts that are as intelligent as we are, we need 
several additional breakthroughs. A good bet is that several of them will come from 
interdisciplinary research between the natural science and the engineering of Intelligence. This 
vision is in fact at the core of the CBMM and of the new MIT Quest for Intelligence, of which I 
will outline organization and research strategy. 
 
 



 

   

Empirical and neural network modeling approaches to understanding human memory and 
consolidation 
Anna Schapiro, Harvard Medical School 
 
There is a fundamental tension between storing discrete traces of individual experiences, which 
allows recall of particular moments in our past without interference, and extracting regularities 
across these experiences, which supports generalization and prediction in similar situations in 
the future. This tension is resolved in classic memory systems theories by separating these 
processes anatomically: the hippocampus rapidly encodes individual episodes, while the cortex 
slowly extracts regularities over days, months, and years. This framework fails, however, to 
account for the full range of human learning and memory behavior, including: (1) how we often 
learn regularities quite quickly—within a few minutes or hours, and (2) how these memories 
transform over time and as a result of sleep. I will present evidence that the hippocampus, in 
addition to its well-established role in episodic memory, is in fact also responsible for our ability 
to rapidly extract regularities. I will show a neural network model of the hippocampus that 
demonstrates how these two competing learning processes can coexist in one brain structure. 
Finally, I will present empirical and simulation work showing how these initial hippocampal 
memories are replayed during offline periods to help stabilize and integrate them into cortical 
networks. 
 
 
Representation learning in rats and men 
Yael Niv, Princeton University 
 
On the face of it, most real-world world tasks are hopelessly complex from the point of view of 
reinforcement learning mechanisms. In particular, due to the ”curse of dimensionality”, even 
the simple task of crossing the street should, in principle, take thousands of trials to learn to 
master. But we are better than that.. How does our brain do it? In this talk, I will argue that the 
hardest part of learning is not assigning values or learning policies, but rather deciding on the 
boundaries of similarity between experiences, which define the ”states” that we learn about. I 
will show behavioral evidence that humans and animals are constantly engaged in this 
representation learning process, and suggest that in a not too far future, we may be able to 
read out these representations from the brain, and therefore find out how the brain has 
mastered this complex problem. I will formalize the problem of learning a state representation 
in terms of Bayesian inference with infinite capacity models, and suggest that an understanding 
of the computational problem of representation learning can lead to insights into the machine 
learning problem of transfer learning, and psychological/neuroscientific questions about the 
interplay between memory and learning. 
 
 
 
 
 



 

   

The Star Cells of Learning: Astrocytes modulate local neuronal activity to affect global 
behavior. 
Inbal Goshen, The Hebrew University 
 
Neurons in the hippocampus perform complicated computations, but not all of them 
participate in those tasks all the time. How are the active populations selected? And can the 
selection process be modulated by other cells? 
Astrocyte can sense both pre synaptic and post synaptic activity, and modulate synaptic 
communication with precision. However, whereas the supportive roles of astrocytes, such as 
glucose metabolism maintenance, glutamate levels monitoring and neurotrophic factors 
secretion, are well recognized, their direct effects on neuronal activity remains elusive. 
We chose to target astrocytic activity as a way to modulate synaptic plasticity and cognitive 
performance. In parallel, we image the activity and structure of neurons and astrocytes 
(separately and simultaneously) in the hippocampus of behaving mice, to study the interaction 
between these populations. To directly and specifically modulate astrocytic activity we 
employed excitatory and inhibitory chemogenetic tools. 
We discovered that astrocytic activation is not only necessary for synaptic plasticity, but also 
sufficient to induce NMDA-dependent de-novo long term potentiation in the hippocampus, 
which persisted after astrocytic activation ceased. In-vivo, astrocytic activation enhanced 
memory allocation, i.e. it increased neuronal activity in a task-specific way, only when coupled 
with learning but not in home-caged mice. Furthermore, astrocytic activation using either 
chemogenetic or optogenetic tools during acquisition resulted in memory recall enhancement 
on the following day. Conversely, directly increasing neuronal activity resulted in dramatic 
memory impairment.  
Astrocytic inhibition during memory acquisition impairs remote, but not recent, recall. We 
show that this effect is mediated by a specific disrupting the projection from the hippocampus 
to the anterior cingulate cortex by astrocytes. 
Finally, we imaged neuronal activity and astrocytic morphology in mice navigating a virtual 
reality, and tested the significance of the affiliation to a certain astrocytic domain to the activity 
of the neurons within this discrete domain. 
 
 
Learning and generalization in visual question answering 
Aaron Courville, University of Montreal 
 
Numerous models for grounded language understanding and visual reasoning have been 
recently proposed, including (i) generic modules that can be used easily adapted to any given 
task with little adaptation and (ii) intuitively appealing modular models that require background 
knowledge to be instantiated. In this talk, I will briefly review some representative models and 
compare them in how much they lend themselves to a particular form of systematic 
generalization. Using a synthetic VQA test, we show that the generalization of modular models 
is much more systematic and that it is highly sensitive to the module layout, i.e. to how exactly 
the modules are connected. We furthermore investigate if modular models that generalize well 



 

   

could be made more end-to-end by learning their layout and parametrization.  Our results 
suggest that, in addition to modularity, systematic generalization in language understanding 
may require explicit regularizers or priors.  
 
 
Vector-based navigation using grid-like representations in artificial agents 
Andrea Banino, DeepMind 
 
Deep neural networks have achieved impressive successes in fields ranging from object 
recognition to complex games such as Go. Navigation, however, remains a substantial challenge 
for artificial agents, with deep neural networks trained by reinforcement learning failing to rival 
the proficiency of mammalian spatial behaviour, which is underpinned by grid cells in the 
entorhinal cortex. Grid cells are thought to provide a multi-scale periodic representation that 
functions as a metric for coding space and is critical for integrating self-motion (path 
integration) and planning direct trajectories to goals (vector-based navigation). Here we set out 
to leverage the computational functions of grid cells to develop a deep reinforcement learning 
agent with mammal-like navigational abilities. We first trained a recurrent network to perform 
path integration, leading to the emergence of representations resembling grid cells, as well as 
other entorhinal cell types. We then showed that this representation provided an effective 
basis for an agent to locate goals in challenging, unfamiliar, and changeable environments—
optimizing the primary objective of navigation through deep reinforcement learning. The 
performance of agents endowed with grid-like representations surpassed that of an expert 
human and comparison agents, with the metric quantities necessary for vector-based 
navigation derived from grid-like units within the network. Furthermore, grid-like 
representations enabled agents to conduct shortcut behaviours reminiscent of those 
performed by mammals. 
Our findings show that emergent grid-like representations furnish agents with a Euclidean 
spatial metric and associated vector operations, providing a foundation for proficient 
navigation. As such, our results support neuroscientific theories that see grid cells as critical for 
vector-based navigation, demonstrating that the latter can be combined with path-based 
strategies to support navigation in challenging environments. 
 
 
Theoretical and empirical investigation of several common practices in Deep Learning  
Daniel Soudry, Technion 
 
We examine several empirical and theoretical results on the training of deep networks. For 
example, 

 Why are common "over-fitting" indicators (e.g., very low training error, high validation 
loss) misleading?  

 Why, sometimes, early-stopping time never arrives?  

 Why can adaptive rate methods (e.g., adam) degrade generalization?  

 Why commonly used loss functions exhibit better generalization than others?   



 

   

 Can we train with large batch sizes, without hurting generalization?   

 Why use weight decay before batch-norm?  

 When can we use low numerical precision, and how low can we get?  
and discuss the practical implications of these results to data parallelism and resource efficiency 
in deep networks. 
 
 
Why do deep convolutional networks generalize so poorly to small image transformations? 
Yair Weiss, The Hebrew University 
 
Deep convolutional network architectures are often assumed to guarantee generalization for 
small image translations and deformations. In this paper we show that modern CNNs (VGG16, 
ResNet50, and InceptionResNetV2) can drastically change their output when an image is 
translated in the image plane by a few pixels, and that this failure of generalization also 
happens with other realistic small image transformations. Furthermore, the deeper the 
network the more we see these failures to generalize. We show that these failures are related 
to the fact that the architecture of modern CNNs ignores the classical sampling theorem so that 
generalization is not guaranteed. We also show that biases in the statistics of commonly used 
image datasets makes it unlikely that CNNs will learn to be invariant to these transformations. 
Taken together our results suggest that the performance of CNNs in object recognition falls far 
short of the generalization capabilities of humans. 
 
 
Unsupervised learning via video prediction 
Rob Fergus, New York University 
 
One approach to unsupervised learning is the prediction of future elements in a sequence, 
given previous ones. We explore this paradigm in the context of video, showing how robust and 
stable representations can be learned. Two key issues are (i) what is the right representation 
space in which to perform the prediction task? and (ii) how to address and model the inherent 
uncertainty in video sequences? We introduce models that address both challenges and are 
able to generate realistic samples many frames into the future. 
 
Joint work with Emily Denton. 
 
 
A less artificial Intelligence  
Andreas Tolias, Baylor College of Medicine 
 
Despite major advances in artificial intelligence through deep learning methods, computer 
algorithms remain vastly inferior to mammalian brains, and lack a fundamental feature of 
animal intelligence: they generalize poorly outside the domain of the data they have been 
trained on. This results in brittleness (e.g. adversarial attacks) and poor performance in transfer 



 

   

learning, few-shot learning, causal reasoning, and scene understanding, as well as difficultly 
with lifelong and unsupervised learning — all important hallmarks of human intelligence. We 
conjecture that this gap is caused by the fact that current deep learning architectures are 
severely under-constrained, lacking key model biases found in the brain that are instantiated by 
the multitude of cell types, pervasive feedback, innately structured connectivity, specific non-
linearities, and local learning rules. There is ample behavioral evidence that the brain performs 
approximate Bayesian inference under a generative model of the world (also known as inverse 
graphics or analysis by synthesis), so the brain must have evolved a strong and useful model 
bias that allows it to efficiently learn such a generative model. Therefore, our goal is to learn 
the brain’s model bias in order to engineer less artificial, and more intelligent, neural networks. 
Experimental neuroscience now has technologies that enable us to analyze how brain circuits 
work in great detail and with impressive breadth. Using tour-de-force experimental methods 
we have been collecting an unprecedented amount of neural responses (e.g. more than 1.5 
million neuron-hours) from the visual cortex, and developed computational models that we use 
to extract principles of functional organization of the brain and learn the brain’s model biases.  
 
 
Less-artificial vision with artificial neural networks 
Matthias Bethge, University of Tübingen 
 
Deep neural networks have become an ubiquitous tool in a broad range of AI applications. 
Resembling important aspects of rapid feed-forward visual processing in the ventral stream 
they can be trained to match human behavior on standardized pattern recognition tasks. 
Outside the training distribution, however, decision making of artificial neural networks exhibits 
large discrepancies to biological vision systems. I will present recent results of my lab to 
quantify and overcome these discrepancies in the context of domain adaptation, few-shot 
learning, task transfer and adversarial robustness. More generally, I will discuss the importance 
of generative modeling and causal representations for the design of more data-efficient, 
interpretable and robust learning machines. 
 
 
Connecting the structure and function of neural circuits 
Srinivas Turaga, HHMI Janelia Research Campus 
 
In this talk, I will describe how we developed deep learning based computational tools to solve 
two problems in neuroscience: inferring the activity of a neural network from measurements of 
its structural connectivity, and inferring the connectivity of a network of neurons from 
measurements and perturbation of neural activity. 
 
1. Can we infer neural connectivity from noisy measurement and perturbation of neural 
activity? Population neural activity measurement by calcium imaging can be combined with 
cellular resolution optogenetic activity perturbations to enable the mapping of neural 
connectivity in vivo. This requires accurate inference of perturbed and unperturbed neural 



 

   

activity from calcium imaging measurements, which are noisy and indirect. We built on recent 
advances in variational autoencoderes to develop a new fully Bayesian approach to jointly 
inferring spiking activity and neural connectivity from in vivo all-optical perturbation 
experiments. Our model produces excellent spike inferences at 20K times real-time, and 
predicts connectivity for mouse primary visual cortex which is consistent with known 
measurements. 
 
2. Are measurements of the structural connectivity of a biological neural network sufficient to 
predict its function? We constructed a simplified model of the first two stages of the fruit fly 
visual system, the lamina and medulla. The result is a deep hexagonal lattice convolutional 
neural network which discovered well-known orientation and direction selectivity properties in 
T4 neurons and their inputs. Our work demonstrates how knowledge of precise neural 
connectivity, combined with knowledge of the function of the circuit, can enable in silico 
predictions of the functional properties of individual neurons in a circuit, leading to an 
understanding of circuit function from structure. 
 
 
Neural networks and the brain: from the retina to semantic cognition, and beyond 
Surya Ganguli, Stanford University 
 
A synthesis of machine learning, neuroscience and psychology has the potential to elucidate 
how striking computations emerge from the interactions of neurons and synapses, with 
applications to biological and artificial neural networks alike. We discuss two vignettes along 
these lines. First we demonstrate that modern deep learning methods yield state-of-the-art 
models of the retina that predict the retinal response to natural scenes with high precision, 
recapitulate the functional properties of the retinal interior, and generalize to simultaneously 
account for decades of physiological studies with artificial stimuli.  Second, we review work on 
how deep neural networks can describe a wide array of psychology experiments about the 
developmental time course of infant semantic cognition, including the hierarchical 
differentiation of concepts as infants get older as well as the notion of coherent versus 
incoherent categories. We describe a mathematical analysis that not only provides a natural 
explanation for the dynamics of human semantic development and category processing, but 
also leads to better algorithms for speeding up learning in artificial neural networks. 
 
 
Assessing the scalability of biologically-motivated deep learning algorithms and architectures 
Timothy Lillicrap, DeepMind 
 
The backpropagation of error algorithm (BP) is impossible to implement in a real brain. The 
recent success of deep networks in machine learning and AI, however, has inspired proposals 
for understanding how the brain might learn across multiple layers, and hence how it might 
approximate BP. As of yet, none of these proposals have been rigorously evaluated on tasks 
where BP-guided deep learning has proved critical, or in architectures more structured than 



 

   

simple fully-connected networks. Here we present results on scaling up biologically motivated 
models of deep learning on datasets which need deep networks with appropriate architectures 
to achieve good performance. We present results on the MNIST, CIFAR-10, and ImageNet 
datasets, explore variants of target-propagation (TP) and feedback alignment (FA) algorithms, 
and examine performance in both fully- and locally-connected architectures. Many of these 
algorithms perform well for MNIST, but for CIFAR and ImageNet we find that TP and FA variants 
perform significantly worse than BP, especially for networks composed of locally connected 
units, opening questions about whether new architectures and algorithms are required to scale 
these approaches.  
 
 
Bounded learning - biological constraints in cortical learning 
Yonatan Loewenstein, The Hebrew University 
 
I will discuss several biological constraints that should be considered when discussing learning 
in cortical networks. First, I will present evidence for substantial volatility of excitatory synapses 
in the living cortex and discuss its implications regarding learning and memory. Second, I will 
explain why excitatory and inhibitory synapses differ in their ability to underlie memory storage 
– because the average firing rates of excitatory and inhibitory neurons substantially differ. 
Finally, I will discuss how the stability of the dendritic and axonal arborizations affect the 
capacity of the network to learn new memories. 
 
 
Neural constraints on learning 
Byron Yu, Carnegie Mellon University 
 
Learning has been studied at multiple levels, including behavior, brain regions, individual 
neurons, and synapses.  However, little is known about how populations of neurons change 
their activity in concert during learning.  Are there network constraints on the types of new 
neural activity patterns that can be achieved?  We studied this question using a brain-computer 
interface (BCI), which allows us to specify which population activity patterns lead to task 
success.  I will address why learning some tasks is easier than others, as well as how 
populations of neurons change their activity in concert during learning. 
 
 
The Brain as a hierarchical adaptive learner 
Sophie Denève, École Normale Supérieure 
 
We combined mathematical results from non-linear adaptive control theory and the principle 
of efficient coding in order to derive how the brain may optimally learn to perform complex 
tasks, while using the minimum number of spikes, and with only local synaptic plasticity rules. 
When applied to unsupervised learning of naturalistic stimuli, the model accounts for receptive 
fields properties and spiking statistics in sensory cortices. When applied to the learning of 



 

   

dynamical systems (e.g. sensorimotor system), we demonstrate that recurrent spiking networks 
can learn to predict and control temporal variables evolving with arbitrary dynamics,  using a 
minimal number of spikes. This is achieved by local, biophysically plausible "hebbian" learning 
rules based on pre-synaptic activity and feedback error signals (in contrast to FORCE of 
backprop in RNN, for example, who do not have local learning rules).  When applied to 
supervised learning based  on input/output exemples (e.g. a classification task) and multi-layer 
networks, this model provides an alternative to backpropagation, e.g. the learning rules are 
local including between hidden layers. Albeit such hierarchical spiking networks have been 
tested so far only in toy example,  our preliminary results suggest that the network may at least 
as performant as backprop while requiring less training examples to achieve high generalization 
performance.  We are thus gearing towards a general theory of learning in brain networks, 
where membrane potential represent prediction errors, spikes signal temporal updates in an 
internal representation, and error feedbacks must both drive downstream neurons and 
modulate synaptic plasticity. Interestingly, a tight balance between excitatory and inhibitory is 
at the heart of this framework. E/I balance must be maintained in each unit, and in fact 
achieving the tightest E/I balance becomes equivalent to learning the tasks.  
 
 
Building a state space for song learning 
Michale Fee, MIT 
 
Research on the avian song system has shed light on how the brain produces precise sequences 
that control behavior, and how the brain implements reinforcement learning (RL) of a complex 
behavior. While RL is a powerful strategy for learning, it depends critically on having an 
appropriate representation of the state space of the task. In the songbird, RL is thought to 
operate on a representation of song timing, but this representation is not present in young 
birds. I will describe a model for how the songbird brain could construct timing sequences to 
support RL, and will offer a hypothesis for how the auditory system could shape these 
sequences to align with a memory of the tutor song, thus facilitating song evaluation. 


