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Abstracy

"This paper reviews some of the recent developiments in the theory of
supervised learning within the framework of statistical mechanics. The
main focus of the paper is the properties of zero temperature learning
which selects at random one of the parameter sets that minimize the
training error. The main results concerning the shapes of the learning
curves are summarized and discussed. Several oulstanding issues are
discussed, mcluding the evolution of the architecture of the learning
systems during training, and the role of the input distribution. New
results concerning learning in multi-layer networks, which illustrate
these issues, are reporbed.
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One of the interesting developments in the theory of supervised learrlin_g has
been the formulation of a statistical mechanical (SM) fratnework of learning
from examples. This framework has not only defined new models of learning,
but also provided powerful analytical tools to staudy their performance.
Using the replica method and meas-field theory, new results regarding the
shapes of learning curves have been derived. The SM formulation of the
roblem and its main general properties are summarized in Section 2. In
Section 3, I summarize the current understanding of the shapes of learning
curves in various classes of systems. Sections 2 and 3 are based largely
on the work described in detail in [34, 32]. For earlier work on the SM of
learning from examples see [10, 36, 16, 25, 18, 15, 17). T have also included
n Section 3 several extensions of previous results, as well as a discussion on
the relation between generalization error and entropy. Most of the results
reported in Section 3 and in the following sections are within the framework
of the zero temperature limjt of Gibbs learning.

Usually one views learning as a process which determines the values
of the parameters of a system with a given architecture, e.g.. size and
number of layers. However, in some cases, the architecture itself may be
effectively modified by the learning process. Section 4 discusses the evolution
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218 H. Scmupolinsky

of the system’s architecture during learning. This is done in the context of
convergent multi-layer networks, where the size of the output layer is much
smaller than that of the input layer. In such architectures, the relatively
few weights close to the output do not contribute significantly to the total
entropy. The modification of these weights amounts to modification of the
effective size and architecture of the network. An example of learning in a
two layer network is presented. Plausible modification of the naive Gibbs
distribution to bias certain architectures is discussed.

Valiant’s probably almost correct (PAC) learning model {37, 9! is man-
ifestly independent of ihe form of the distribution of the inputs on which
the system operstes. In contrast, in the SM framework, learning is defined
relative to a specific input distribution which is usually assumed to be “well
behaved”., Nevertheless, relatively little attention has been given to the in-
fluence that the shape of this distribution might have on the easiness of
learning a task. Section b discusses the effect of the shape of the input dis-
tribution on the number of examples needed to learn a classification task.
An example of perceptron learning with an input distribution that consists
of a Gaussian miziure is presented, Sections 4 and B contain a preliminary
presentation of new results that will be reported in detail elsewhere [4, 5].
Concluding remarks are given in Section 6.

2 Btatistical Mechanics of Learning from Examples
2.1 General Framework

We consider here a deterministic system that operates on an M-dimensional
input space according to ¢ = o(W;8). Here S is an M-component vector
S; (6= 1,..., M), representing the inputs to the system, and W denotes
the N parameters W; (1 = 1,..., V) that specify the system. The output
of the system is denoted by o which for simplicity will be assumed to be a
single real number. Using the language of neural networks we will call W;
the “weights” of the system. The weight space is characterized by a prior
measure du{VW) defined on the N-dimensional space of W,

The goal of learning from examples is to find a set of W; that yields
a good imation to a farget function oo(S). The system is provided
with a set of ezamples consisting of P input-output pairs (S, 0o(S!)), with
[ =1,...,P. We assume that each input vector 8' is chosen at random
from the entire input space according to some normalized « priori measure
denoted du(S).

Learning in the framework of statistical mechanics is based on the
training energy

. P
1 BW) = Y (W8 |
(=1
where the error function e(W;8) is zero if o(W;8) = o0u(S) and positive

otherwise. The performance of a given network ¥ on the whole input space
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is measured by the generalization function, defined as the average error of
the network over the whale input space, ie.,

. .
(2.2) (W) = j? du(S)e(W;S) .

We distinguish between leaming of realizable rules and unrealizable rules.
' Realizable rules are those target functions oo(8) that can be completely
- realized by at least one of the networks in the weight space. Thus in a
realizable rule there exists a weight vector W* such that

(2.3) (W, 8)=0, forall S,

or equivalently, e(W*) = 0. An unrealizable rule is a target functi?n for

which
(2.4) Emin = z%_n (W) >0.

In the SM framework the learning process generates a Gibbs distribution

(2.5) P(W) = 271~ PEW)

where f = T7! characterizes the width of the Gibbs distribution. The
normalization factor Z is the partition function

(2.6) 2= [ au(W)exp(~BE(W)) .

Note that P(W) has been defined relative to the prior measure dp(W.
This is termed Gfibbs learning. Its performance in a given task is evaluated
by averaging the performance of a given network W with respect to P(W).
This average is called a thermal average, and will be denoted by (.- 7.
In most cases, the thermally averaged quantities are further averaged with
respect to the sampling of examples. This second average, called a quenched
average, is dencted by ((---)) = [T[,du(S"). In particular, the average
training and generalization errors are given by

{li

(2.7) - «(T,P) PEMW)r)
(2.8) &(T, P) (W) -

1]

The entropy S is defined by
(2.9) L S(T,P) = - / (W) P(VW) In P(W) ).

The entropy per Weight will be denoted by s = S/N.
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2.2 The Thermodynamic Limit

Classical statistical theory of learning from examples is usually concerned
with the performance of a system in the limit of a large size of training
set, namely, £ — oo, while other parameters, in particular the size of the
system, IV, are held ﬁxed Thus, many of the results are applicable only
in the Lmiu where the generalization error is near zero or near its minimal
value €gi,. In contrast, statistical mechanics is useful primarily in the limit
of many degrees of fieedom, Le., N — co. A main reason for this is the fact
that in this limit the distribution of quantities such as ¢, and ¢, are sharply
peaked about their thermal average so that those averages represent the
typical behavior. It should be stressed, however, that the SM formulation is
well defined for arbitrary system size, and in scme cases, useful theoretical
results can be derived from it which do not depend on N being large (an
example will b° mentioned later).

In the case of learning from examples, definition of the thermodynamic
limit also reqguires specification of how the number of examples depend on
N. The appropriate imit is IV, P -~ oo while the ratio

(2.10) o= P/N

is_held fixed. Note that the temperature T is alsc held fixed. This definition
is reasonable since it is expected that for large V appreciable reduction in ¢,
requires number of examples that is of the same order as V. ;From the SM
pu:bewne the above scaling ensures that the energy which is proportional
te P, competes with the entropy, which is proportional to N.

Several qualifications to the above scaling assertion are worth mention-
ing. First, for some problems the above scaling does not hold at zero T.
A simple example is a perceptron with N inputs and a linear output that
learns a rule derived by a similar perceptron with binary weights. If the
weights of the student are also constrained to binary values then ¢,(a) =0
at I = ( for @ > 0. In this case, the appropriate scaling of P is probably
P o N/{(ln NY* with a positive exponent z (For details see the section on
linear perceptron with discrete weights in [32]). Nevertheless, in problems
involving dichotomies (i.e., thresholded outputs rather than linear outputs)
or in cases where the weights are continuous variables, the above scaling is
generically expected to hold for 7' = 0 as well.

Another point is that in general there may be more Lhan one natural
way of scaling up the size of the system. Estimating N in real life learning
systems is another open issue. In particular, redundancy in the inputs
may generate strong correlations in the weights even if a priori they are
independent variables. Also, the effective size of the system that participates
in the learning may be smaller than the total size V. This last issue will be
discussed i Section 4.

Cne reas¢11 why Gibbs learning is a good meodel for learning lies in
the general property that for any fized T, increasing o leads to a good
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generalization, i.e.,
(2.11) €0~ €min , €& = €min , @ — 00 v T fized .

Another general property of Gibbs learning is concerned with the relation
between generalization and training. Using the definitions Egs. (2.7) and
(2.8) we have shown that

(2.12) a(T,a) < ¢,(T,a)

for all T and .

An interesting question is whether reducing 7 is a good strategy for
learning. Thermodynamics ensures that ¢ will decrease with 7. However,
ag far as we know, €; Can in principle have a miniroum at non-zero 7° (for
fixed ¢). Cases where €, does not change with 7' below some critical value
are known. Furthermore, approximate solutions of several models of learning
unrealizable rules yield a minimum of &(T, @) with respect to T, at non-zero
values of 7. Unfortunately, those solutions suffer from an instability, known
as replica symmetry breaking instability (see the following paragraph), and
it is not known whether the exact solutions will have this property as well,
(For details see [32).)

2.3  Theoretical Metho ds

Here I briefly comment on the two main tools that are used in the theoretical
analysis of the properties of the Gibbs distribution, Eq. (2.5). They are the
replica method and the mean-field theory. The replica method deals with the
evaluation of quenched averages [12]. In particular, the important quantity
{10 Z)) is evaluated using

\

LAz )
2.1 nZ) = lm N2V
3) {InZ) .

o~

The replica trick is to evaluate {{ z™)) for positive integer n | by replicating
the system W (with the same set of examples) n times, and then analytically
continue ton = 0. For Z of Eq. (2.6) we obtain

(2.14) (2" = [ 11 duW)esp(—Pagwey)

o'==]
where & is

(2.15) GIW] = —-ln/d/i(S) exp /~,(5 }2: e(We, S)) .
\ o=]

Thus, in the replica formalism the number of examples appears as a
prefactor in the exponent of Eq. (2.14). Al other example dependence has
been removed, so that the replicated energy G depends only on the form
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of (W;S) and on the nature of the a priori measure on the input space,
du(8).

To evaluate the thermodynamic limit, one should calculate

im lim N=1q(( 2™ ) /dn .

N—c0n—0
However, in most cases the only feasible procedure is to take first the limit
N — o0 and thenn — 0, The interchange of order of limits hag been justified
for certain spin-glass problems by van Hemmen and Palmer (38, 39]. Most
probably, their arguments can be extended to the present class of problems
as well.

In many of the learning problems, one can evaluate Eq. (2.14) in the
limit N — oo by expressing it as an integral over few integration variables
(the number of which remains finite ip the V — co limit) and evaluating
this integral by a saddle point method which, in principle, is exact in the
N — co limit. The resultant solution is also known as mean-field theory.
The difficulty with this method lies in the extension of { Z™)) from positive
integer n toreal n, and in particular to real n near 0. For any positive integer
n 2 2 the correct saddle point is one which does not break the underlying
symmetry under permutation of the replica indices. The najve procedure
consists of calculating the replica symmetric saddle point for integer n > 2
and taking the n — 0 limit by treating n as a general real number. However,
in many important cages, the replica symmetric theory can be shown to be
wrong. In these cases one must make the extension to real n < 2 using
saddle points that break the symmetry of permutation among the replica
indices. The saddle point with broken replica symmetry that, in the n —
limit, presumably yields the ezact result for imy e N "' 1n Z ), has been
studied in detail in the spin-glass problem. The physical implications of
the replica symmetry breaking have also been elucidated [27]. These results
apply also to problems of learning from examples. However, evaluating
the saddle point equations with broken replica symmetry are, except for
special cases, extremely difficuls. Moreover, adequate justification for the
procedures involved is still lacking. Several concrete examples of problems
in perceptron learning that involve replica symmetry breaking are described
in [34, 32].

2.4 High Temperature Limit

This limit is defined so that hoth T and ¢« approach infinity, but their ratio
remains constant:

(2.16) Po =finite, @ —oco, T = co.

In this limit £ can simply be replaced by its average Pe(W) as the
fluctuations, § E, coming from the finite sample of randomly chosen examples
can be ignored. The Gibbs distribution reduces to the following simple form

(2.17) P(W)= 271 exp(—N fae(W)) |




|

388

Learning from Examples 223

(2.18) Z = /du(W) exp(—N Bae(W))

where (W) is the error function defined in Eq. (2.2). ;From theoretical
point of view, the simplicity of Eq. (2.17) lies in that one does not have to
resort to complicated techniques such as the replica method, since quenched
averaging is not needed. Note that even in this limit good generalization can
be achieved. In particular, as the effective temperature 7'/ decreases, the
network approaches the optimal weight vector W*, which minimizes ¢(W).

Further insight into the nature of the learning in this limit is gained by
writing

(2.19) Z = /deexp N (s(€) — Pae)

The function s{e€) is the entropy per weight of all the networks with
W) =g ie,

(2.20) s() = NI / du(W) §(e(W) — ) .
In the large &V limit the expected generalization error is simply given by

(221) Ba = Hs/0e .

Thus, the properties of the system in the high-T limit are determined
completely by the entropy as a function of the generalization error. Lastly,
an important feature of learning at high temperature is the lack of difference
between the expected training and generalization errors, i.e., ¢ (Ba) =

e(fa).

2.5 YZero T Learning
In the limit of 8 — oo, the Gibbs distribution collapses to

(2.22) P(W) = Z7 (W — Woin)

’

where W,;, minimizes the training energy. When the ground state of E is
not unique then the zero 7" learning selects one of these vectors at random.

The zero 7' limit is useful particularly in realizable problems. Here the
ground state of I is zero for all o and the performance depends purely on the
statistical properties of the version space, namely, the space of all weights

- that are consistent with the given examples. In the case of a dichotomy (i.e.,

+1 output) the volume of the version space is given by

. P
(2.29) Z = /(/,;!('VV)H@(UQ(S[)G('\V;SI))

l==1

where [ rons over the P examples. lucreasing £ improves the porformance
by sheinking the version space until only the target weight vector rewains.
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However, this process not only reduces the entropy of the solution space but
may also modify its shape. Therefore there is no simple general relationship
between S, and €, even in zero-T learning, as will be discussed below.

In the thermodynamic limit, Gibbs learning in general, and at I' = 0
in particular, may exhibit rather unexpected behavior. The version space
may break up into several effectively disjoint subspaces. In such a case its
volume, Eq. (2.23), will be of the form

& SO
(2.24) Z =3 Zy=y €
k k

n cases where the subspaces are related by a symmetry operation all

I
the entropies s, may be equal. For instance, fully connected multi-layer

networks may possess permutational symmetry, where permuting among.

the hidden wunits of each hidden layer generates an equally good set of
weights, see [3, 13, 28, 29] and Section 3 below. In the absence of symmetry,
generically one s will be larger than the test. The subspace with the
maximal entropy will dominate the sum in Eq. (2.24). In other words, with
probability approaching unity as IV — o0, the zero T learning algorithm
will select W that resides in the subspace with the maximal entropy. The
other subspaces represent metastable states. Their contribution may still be
important in that a learning dynamics which only approximates the zero T’
learning may end in one of the metastable states. Examples of metastability
in perceptron learning and their relevance to the dynamics are discussed in
[32]. Realizations of Eq. (2.24) that are specific to multi-layer networks will
be discussed in Section 4.

Most of the discussion that follows will be within the framework of zero

T learning.

Learning Curves: Summary of Results

(9%}
e

3.1 Smooth Networks

An interesting class of networks for which a universal behavior of the learning
curves for large o exists is the class of smooth networks. They are defined as
having continuously varying weights and an error function ¢(W;8) that is
twice differentiable with respect to W in the vicinity of the optimal weight
vector W*, which minimizes e(W). At large P the Gibbs distribution is
sharply peaked around W*. Expanding In P(W), we have shown that its
{orm near the optimal vector is Gaussian with a width that scales as 1/v/P.
Since the deviation of € and €, from ey is quadratic in §W it follows that
their tail for large P has a 1/P form. In the T =10 limit we have obtained

L ™V -1
(3¢l) €g(P> = €min ";’ ( ! U > + O(P-_Z) .

55
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TV -t .
(3.2) Et(a) = €mip — <~i§?> + O(P—z)

The matrix U,; is the Hessian of the error function at the optimal weight
vector W¥, ie.,

(3.3) Ui = /du(S) B.0,(W*, 8) .

The symbol 8; denotes J/0W;. The matrix Vij is
(3.4) Vi; :/du(s) Bie(W*, 8)0,¢(W*, ) .

The above results predict an important relationship between the expect-
ed training and generalization errors at 7' = 0. According to Egs. (3.1) and
(3.2) both errors approach the same limit € with a 1/P power law. The
coefficients of 1/ P in the two errors are identical in magnitude but different
in sign yielding
(3.5) éﬁ = __?i'i ,

{3}?3 aP

This result can be used to estimate the expected generalization error from
the measured training error in smooth networks.

~Lastly, we would like to emphasize that comtrary to some apparent
misconceptions [2] our results for smooth networks have been derived by
the replica theory using only the limit of large P (and not large N). The
derivation is therefore valid for arbitrary system sizes. In the limit of large N
we expect that TrV' ¥ ! scales ag V. Therefore, in the thermodynamic limit,
Egs. (3.1) and (3.2) can be viewed also as expansions in 1/a. Also, in the
derivation of Eqs. (3.1) and (3.2) no assumption has been made regarding
the nature of the learning system, apart from the smoothness requirements.
Thus, our result for smooth networks is to our knowledge the first universal
prediction on the asymptotic shapes of learning curves. It demonstrates the
usefulness of the replica method.

P—soo, T=0.

3.2 Btochastic Machines

An interesting class of learning systems consists of learning a stochastic
input-output relation described by the conditional probability P(o|S; W)
where Wy denotes the vector of parameters specifying the target distribution
that generates the data. The asymptotic shapes of the learning curves of
this system have been derived recently by Amari and Murata [1]. As I show
below, this system is an interesting special case of the general results for
smooth networks Eqs. (3.1) and (3.2),

Given a set of P input-output pairs one can train the system with the
log-likelihood training energy,

R

(3.6) E(W) = -3 In P(o]S;; W)

!

1

1
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This energy is of the form of Eq. (2.1) above with the identification
(3.1 ((W;S,0)= —In P(c|S;W).

Thus our general results apply here as well, Note that the quenched average
consists here of

(3.8) (o) = /de(sl) dot P(H|8LWo)....
l

In particular if In P is twice differentiable near Wy then these systems fall
under the category of smooth networks. Evaluating Eqs. (3.3) and (3.4) and
using the normalization property of the conditional probability it is easy to
show that

(39 Uz'j = Vij = << (82111 P)(ﬁj 1I1P) »

where the derivatives are evaluated at the target weights Wo. This matrix
is known in statistics as the Fisher information matriz [11, 1}. Since U and
V are identical, TrtVU~1 = N. Hence Fgs. (3.1) and (3.2) reduce to the
simple form

10 P) = tpint+ 77

(3.10) ( ) = Emint 2a
1

(311\) €t(P> = &min _2—&

in agreement with Amari and Murata [1]. It is interesting that in the case
of a log-likelihood error function, the asymptotic behavior of ¢, and € is
independent of the details of the problem. It should be stressed, however,
that this simple form holds only when the target distribution is contained
within the space of the trained one, i.e., that the architecture of the learning
machine contains Wo.

Learning probabilistic rules has been studied also within the framework
of PAC learning [21] and the Bayes approach [19].

2.3  Learning Realizable Dichotomies

When the output of the system is thresholded the energy function is not
smooth and the above results are not valid. Considerable attention has
been given to the rate at which the entropy of the version space decreases
as examples are added. The information gain per example (in bits) (36, 20]
is defined as

(3.12) I(a) = —(In2)"'0s/d0

Interesting bounds on ¢, for zero T learning have been derived in terms of
I(c) [20]. They read

(3.13) 5 h-U(I(P)) < & (P) < %I'(P)

where h=! is the inverse of the function h(z) = —(ln 2 Helne + (1 —
2)In(l — ), with 0 <z < % Consequences of these bounds will be given
below.
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Dichotomies with continuous weights: This class of systems
consists of learning dichotomies that can be expressed as

(3.14) o(S; W) = sign (f(S; W))

where f is a smooth function of W, An example is a multi-layer
network with continuously varying weights and sigmoidal hidden units
but a thresholded output. This class has been studied recently by
Amari et al. [2]. At large o the weights of the systemn W will be close
to the target vector Wy and Eq. (3.14) reduces to

(3.15)  o(S; W) =~ sign (f(S; Wo) + Vy £(S; Wo) - sW))

£

where §W = W — W,. Thus the errors are restricted to a volume of
inputs of o width of the order |6W | around the decision hypersurface
f(8; W) = 0. Assuming a smoocth measure on the input space, one

obtains ‘roughly’

{ STRT "
(3.16) 7z ,3/' d(EW)ePIW| 5 p-I

from which it follows that s & — In o as P — oo ylelding

1

(SO

(3.17 Tlo) = P
L ol — 00 .
( ) M (}ﬁ 2)& )
Under these conditions one expects
_Z“trfj
(318) Gg%?— 3 P—_)OO

The general results, Bq. (3.17) and (3.18), have been derived by Amari
et al. [2]. They are consistent with the known specific SM solutions
of learning dichotomies in networks with continuous weights [32]. For
more details see [2, 33]. '

At present, the general dependence of the coefficient €1 on the
properties of the system is not known. In fact, substituting Eq. (3.17)
into Eq. {3.13) yields

n2 1

19 L P
(3.19) 2llnal = = 2(In 2)

Note that only the upper bound provides a useful bound on €.

Equations (3.13) and (3.17) imply that as P increases the information
provided by an additional example vanishes. This is a consequence
of the random sampling of each new example. In contrast, certain
algorithms’ for drawing examples by gueries [31, 14] have the property
that

(3.20) lim I(P)=171,>0.

P—oo
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In fact, this property may serve as & qualitative distinction between
random sampling of examples and good query algorithms. For more
details see [31, 14].

It is also of interest to consider [{a) and €,(e) in the limit of small
a. Let us assume for simplicity that the target rule divides the input
space into two subspaces of equal probability, and likewise that the
prior measure on W is unbiased to o = 41 or —1. It can then be
shown that, for continuous W, the entropy takes the form

(3.21) s{a)msg—(In2)a+s0? |, a—0

where sy is the entropy of the prior measure on W and 87 > 0is a
constant that depends on the task and systemn. Under these conditions
one obtains i

I3
(3.22) -6 N o, o—0

2
with €3 > 0. Using the bounds Eq. (3.13) with

Sa ¥
(3.23) Ha)m 1 - =
vields
1
(3.24) S

Here again cnly the upper bouund provides a useful bound on <.
Further study is needed in order to understand the dependence of
the coefficients €1, and €; on the system properties, and to derive tight
bounds on them.

The relation between entropy and generalization in zero 7' learning
will be discussed again in Section 4.

Dichotomies with discrete weights: The most dramatic departure
from the gradual power law predicted above occurs in learning
realizable dichotomies where both the target and the space of W
consist of only discrete valued weights. An example is a perceptron
learning a perceptron dichotomy, sign(S-Wy), where all the weights of
both ‘student’ and ‘teacher’ perceptrons are binary valued. In this case
it has been shown that a discontinuous transition to a perfect learning
from a state with large ¢, to a state with ¢, = 0 occurs at a critical
value of o. This transition is sharp only in the large N limit. Otherwise
it is smeared over a narrow range of o near a.. The discontinuous
transition to perfect learning in single layer [15, 34, 32, 7] and two-
layer [35; 28, 22] networks with binary weights has been studied. In
other cases involving non-smooth weight space, learning curves may
show exponential tails or power laws with powers smaller than —1.
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3.4 Learning Unrealizable Dichotomies

Very little is known about the general properties of learning curves in
unrealizable non-smocth tasks. All known SM solutions of models of learning
unrealizable dichotomies with continuous weights predict a zero 7" behavior
of the form .

1
8 3] s A e . 5
(3.25) cgle) = €min x @77 .

Examples are learning by a perceptron a dichotomy that is not linearly
separable [18], or a perceptron learning a rule corrupted by noise [17].
Unfortunately, the underlying theories are definitely not exact because
they are based on a replica symmetric saddle point, which is unstable in
these unrealizable cases. Therefore, it is unclear to what extent the above
prediction holds, even for these specific cases. Deriving a general form for
the asymptotic shapes of learning curves in learning vnrealizable dichotomies
with smooth weights remains an interesting open challenge. At present, it
is unclear whether PAC theory can yield interesting bounds in the case of
unrealizable rules.

:

4 The Evciuticn of Architecture in Multi-Layer Networks

P

Although the learning slgorithm superficially treats all the weights equally,
different weights may have very different influence on the emergent network,
particularly in large wulti-layer convergent networks. An example is a fully
connected two-layer network with M inputs, & hidden units, and a single
output. For simplicity we assume that Ky is held fixed while M approaches
oo, The first layer weight vectors, i.e., those connecting the inputs to the
hidden units are denoted by 3%, k = 1, ..., K. The second-layer weights are
denoted by Wk, In such an architecture the direct entropic contribution of
the relatively few W’s is negligible. On the other hand their value determines
in general the function of the first layer and therefore also the entropy of the
whole network. Hence, the averaging over all weights in the version space is

effectively broken into
(4.1) ' Z = Try exp (Ms(W))

where M s(W) is the entropy of the first-layer weights for a fixed set of W.
Bquation (4.1) can be viewed as a sum over all subspaces of the version space
corresponding to different effective architectures. ;From the discussion of
Eq. (2.24) it follows that in the limit of large 34 only the architecture with
the maximal entropy will survive.

To lMlustrate this point, let us consider learning a target rule generated
by a two-layer network, also called a committee machine:

K
(4.2) oo(8) = sign | > sign(Jg-S))
k=1
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where the K vectors J& are M-dimensional vectors, where M denotes the
dimensionality of the input space. Let us assume that the prior weight space
in which learning occurs corresponds to all two-layer networks of the form

(Ko \
(4.3) o(8) = sign |y, WF sign(Jk~S))

k=1

with Ko > K, J* . J* = 1, and each of the W} is restricted to the values
0 and 1. Then the weight space consists of all committee machines of the

form

K/
(4.4) sign (Z sign(J* . ‘5)\
k=1 /

where 1 < K’ < Ky. To avoid ambiguities I will assume that all X and
K’ are odd. Note that those first-layer vectors that are connected to the
hidden units with zero W's, 1.e., J¥ with k = K’+1, ..., Ky, do not affect the
output of the network hence their values are not affected by the examples.
Committee with K’ = 3 learning a perceptron rule K = 1 has been recently
studied in [28]. The case & = K’ has been recently studied in [29].

Here I want to address two guestions: First, which committee size X’
will the zero T learning algorithm choose? Secondly, which size is optimal
for generalization? Obviously, the answer may depend on a = P/M. For
large o, it is clear that K’ will be at least equal to K as a smaller committee
will not be able to satisfy the given examples. What is the situation for
small a? ‘

» To investigate these issues, we have calculated the generalization errors
and ertropies of committee machines of size K’ learning at zero T' target
committee of size K with orthogonal perceptrons, J ﬁ, -J }5 = 6k1, in the limit
of small o {4]. For ¢, we have found

— 2 fr fx) e

[

(4.5) (KK o) w2

where \/——
. VK K1
(4.8) fi = 7oK ~1 ( (K - 1)/2)

Since fg is decreasing with I, Eq. (4.5) implies that at small & the optimal
architecture from the point of view of generalization is always

(4.7) E'=1

which is a single layer perceptron! This conclusion is independent of the
size I{ of the machine that generated the rule. The moral of this result
is the followikng: when the system is far below the capacity, squeezing the
information from the available examples into the smallest network maximizes
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the generalization capability. The results for the entropies are less intuitive.
We have found at small «

(4.8) S(K' Ky e)/M = So(Ky) — (In2)a+ S(K, K’ o®
where So(Ky) is the prior entropy of the space of Ky vectors J*, and
(4.9) S E) =Tk~ (= fo)

Note that in Eq. (4.8) we have calculated the total entropy of X vectors
J', including the prior entropy of the Ko — K’ vectors that are ‘passive’, as
- they do not contribute to the output of the network.
.‘ Equation (4.9) implies that at small & the committee machine with the
maximum entropy is the one that matches that of the target committee.
‘Thus the zero T learning will pick the architecture with

(4.10) : K=K

The reason for this is as follows: On the one hand, using a small value of &’
leaves all the vectors J' with Ko > 1 > K’ out of the learning process, and
therefore free from any constraints. On the other hand, the constraint due
tc the examples that are imposed on the ‘active’ vectors I with 1 <1< K’
are more stringent than if the learning would have been distributed over a
larger network. "Balancing the two opposite trends leads to the result Eq.
(4.10). |

It is interesting to compare these results with the general results for
small v, Egs. (3.21) - (3.24). In particular, the upper bound of Eq. (3.24)
would suggest that the optimal ¢, will be that with the highest entropy. This
is not born out by our results, which say that ¢, is optimal for a perceptron,
even though in general it is not the architecture with the highest entropy.
The reason for the different trends of the entropy and generalization error
is the fact that ¢, is related to the capacity of the part of the network that
participates in the learnivg. It is therefore unaffected by the presence of
large parts which are ‘passive’. In contrast, the learning algorithm is in
principle affected by the total entropy of the weight space.

The above results suggest a useful modification of the Gibbs learning
algorithm. Instead of weighing different architectures with the same a priori
probability as in Eq. (4.1) one should add priors biasing in favor of small
architectures. This can take the form ’

(4.11) Z=Trwexp(Ms(W) + ME(W)u)

where K (W) is the number of active hidden units or equivalently the
number of non—i’e:ﬂp second-layer weights. Note that the bias in favor of
a small architecture has to be exponential in M to overcome the difference
in entropies between the architectures. This modification is related but
not equivalent to the common practice of adding weight decay terms to the
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training cost function. A simple weight decay term will favor weights that
are small in magnitude, everywhere, whereas here the bias favors specifically
small number of non-zero second-layer weights.

In the above example, modifying the zero 1" learning according to Eq.
(4.11) with a fixed u > 0 will result in favoring the perceptron for sufficiently
small @. As a increases the architecture will be forced to change to larger
K" antil K’ = I is reached for sufficiently large . It should also be noted
that the zero-T result, Eq. (4.10), holds only for the case where the teacher

vectors J& are orthogonal. In contrast, when they are highly overlapping,
K for small ¢, leading to a

even the simple zero-T learning will choose K’/ <

rowth of the network as o increases. We are currently studying the sequence
of architecture modifications that occur in this problem as o increases [4].
Another phase transition that happens in this problem is associated with
the symmetry under exchanging the different vectors J%, 1 <1 < K’. At low
o the Gibbs state will respect this symimebry, whereas above a critical value
of o the version space will be broken into disconnected regimes, with each
of the subspaces breaking the global permutation symmetry {3, 28, 29].

5 The Role of Input Distribution

In all the network models studied thus far using statistical mechanics [32],
the relevant scale of P for the reduction of ¢; is the number of independently
varying weights, N. Results from the PAC formalism suggest that the
scale of the learning curve is the Vapnik-Chervonenkis dimension, which
for feedforward neural networks is closely related to the number of weights
[8]. These theoretical results seem to imply that good generalization
performance generally requires many more examples than independently
varying parameters (at least continuously varying parameters). This result
seems to contradict what is often observed in practice. For example, layered
feedforward neural networks have been trained to generalization error rates
of 4 — 5% in isolated hand-printed digit recognition with a number of
examples roughly the same or even considerably less than the number of
parameters [24, 26].

Baum [6] has suggested that such empirical results mlght be explained
by a learning theory for more “realistic” input distributions. Smoothness
of the input distributions is insufficient to explain the apparent paradox
since the SM results assume a well behaved input distribution. Thus, one
has to assume an input distribution that is not only smooth but also has a
shape that ‘matches’ the specific task at hand. It is thus of theoretical and
practical interest to understand how the shape of the input distribution will
affect the number of examples needed for achieving a good generalization.

We have recently studied this issue in cases where the inputs are.

generated by Gaussian mixtures [5]. To illustrate the results, I will consider
here the simple case of a perceptron learning a target rule generated by a
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perceptron
(51 U@(S) = sz'gn(Wo . S)

with W - W = Wy - Wy = 1. Solution of this problem with an input
distribution consisting of an isotropic Gaussian centered at the origin [17, 32]
shows that in the limit of large o ¢; at zero T" is given by
0.625
(5.2) : Eg R ——— a5 00 .
o

This power law is consistent with the general result for learning a realizable
dichotomy with continuous weights, Eq. (3.18) above. Here we consider the
- same problem, but with an input distribution which is more appropriate
for a pattern classification problem. It consists of a mixture of two equally
weighted Gaussians centered at £uWy

1 :

- ! 2

S5 OXP <~[S + uWyp| /2) .

1 o
P8) = e ax -8 — W 279Y 1. .
( ) P ( ! Dl /‘4’> T 2(27()

2(2m)N/2
(5.9

The parameter u measures the distance between the Gaussian centers
(relative to their width which is taken here to be 1 in each direction). It also
measures the degree by which the input distribution matches the target rule.
The larger v is the smaller is the volume of inputs that lie in the decision
boundary of the rule Wy - S = 0. The previously studied perceptron rule
orresponds to u = (.

Solution of the SM of this problem reveals the following interesting
phenomenon [5]. For any fixed v, the large « behavior of ¢, is independent
of u. It is given by Eq. (5.2) with the same prefecior. The origin of the
invariance of the asymptotics to changing u is that although reducing the
density of inputs near the decision boundary reduces the chance of an error
for a given W, it also reduces the effectiveness of the training set for the
same reason. The two effects cancel each other exactly in the large o regime.
Thus, on the basis of the large « behavior one would naively conclude that
% does not play a significant role. This, however, is incorrect. For large u
the asyrmptotic behavior appears only in extremely large values of & and
extremely low values of ¢;. Thus, for large u, the asymptotics, evaluating
by taking the limit of large sample size, keeping the rest of the parameters
fixed, is completely irrelevant.

In fact, we find that for large u, ¢, obeys (in the interesting regime where
it ig still of order 1) the following scaling law
(5.4) eg(a,u) = &au?)
where &(z) is 2 monotonic decreasing function of z. Thus for large v the
number of examples scales as

| =

R

(5.5) P

=
O
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Study of more general cases (e.g., multi-layer networks, more than two
clusters) indicates that the scaling law Eq. (5.4) is a general characteristic of
the zero 7" learning algorithm. We have also found that other algorithms, in
particular the Hebb rule, are much more efficient than the zero 7" algorithm,

in the case of large u. Their performance can be described by a scaling law
of the form

.
(5.6) Pt

i
Comparison with the scaling law Eq. (5.5) shows that for large u the number
of examples needed for learning the task with the Hebb rule is negligible
compared with that required by the zero T training.

Another interesting finding concerns with the Annealed theory of learning
from examples [30]. This theory replaces the quenched average {(In Z)) by
the much simpler quantity In{{ Z)). As discussed in detall in [32], it is
usually an wncontrolled approximation to the correct guenched theory. We
also discuss there the circurnstances where this theory yields a reasonable
approximation to the guenched theory. We have found that in the limit of
large u, a modified version of the annealed theory of the zero 7' learning
becomes exact. This and the above scaling results open new avenues to
theoretical investigations of learning pattern classification tasks.

& Conciuding Remarks

Despite significant progress in the theory of learning, many central issues
remaln open. Axn important set of questions that have not been discussed
in this paper concerns the dynamics of learning. What are the costs in
time of executing specific learning models, e.g., zero T learning? What
is the nature and character of the overtraining commonly seen in learning
dynamics? An important challenge is to understand the implications of
learning theory for simple learning algorithms, e.g., the back-propagation
algorithm. Some aspects of learning in multi-layer networks are still poorly
understood. One issue is related to the determination of the architecture,
which was discussed in Section 4. Another issue is the role of non-linearity
and saturation of hidden units.

Finally, I wish to comment on the challenge of understanding natural
learning processes. Learning in animals and humans often takes an all or
none form. This phenomenon, which is the basis of the Gestalt approach
to natural knowledge acquisition [23], seems to be in disagreement with
the cuarrent incremental approach to learning. In particular it is not
accounted for by the gradual bounds on learning provided by the PAC
theory of learning. However, our results regarding discontinuous transitions
" to perfect learning indicate that when large systems are involved, even
learning algorithms that are incremental on the microscopic level may lead
to an emergent sharp transition from a bad to a good learning state at the
macroscopic level. It is thus of interest to further investigate the conditions
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that are likely to yield emergent transitions in learning systems. In this
paper I have considered a particular learning paradigm, supervised learning
by training with labeled examples. There is a considerable gap between
current learning models based on this paradigm and realistic models of
learning in biological systems. This calls for more theoretical effort in
understanding the powers of various unsupervised lsarning paradigms, as
well as simuple Hebb-like learning mechanisms.
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