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Chapter 10
Theoretical Issu.es in Learning froln Exalnples

H. Sompolinsky*

A.bstrad
This paper reviews some of the recent developments in the theory of

supervised learning within the frarnework of statistical mechanics. The
main focus of the paper is the properties of zero temperature learning
which selects at random one of the parameter sets that minimize the
training error. The maillresults concerning the shapes of the learning
curves are slHnmarized and discussed. Several outstanding issues are
discussed, including the evolution of the architecture of the learning
systems during training, and the role of the input distribution. New
results concerning leaming in multi-layer networks, ,vhieh illustrate
these issues, are reported.

1 lilt.eo ,du.cti(~rJ

One of the interesting developments i:::1tIle theory of supervised learning has
been thi3 formulation of a statisticalmedli:\'Dical (8M) framework oflearning
from examples. This framework has not only de:fined new models onearning,
but also provided powerful analytical tools to study their performance.
Using the replica method and mean-field theory, new results regarding the
sll<ipes of learning curves have been derived. The 8M formulation of the
problem and its main general properties a.re summarized in Section 2. In
Sectjon 3, I summarize the current understanding of the shapes of learning
curves in v;11"ious classes of systems. Sections 2 and 3 are based largely
on the work described ill detail in [34, 32]. For earlier work on the 3M of
leal'l1illg from example:3 see [10,36, 16,25, 18, 15, 1?J. I have also included
in Section 3 several extensions of previous results, as well as a discussion on
the reIatiOll between generalization error and entropy. Most of the results
reported in Section 3 and in the fonowing sections a.re within the frameviOrk
of the zero ternperature limit of Gibbs learning.

UsuaUy one views learning as a process whIch determines the values
of the parameters of a system with a given architecture, e.g., size and
number of layers. However, in some cases, the architecture itself may be
effectively modified by the learning process. Section -4discusses the evolution
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of the system's architecture during learning. This is done in the context of
convergent multi-layer networks, where the size of the output layer is much
smaller than that of the input 18,yer. In such architectures, the relatively
few weights close to the output do not contribute significantly to the total
entropy. The modification of these weights amounts to modification of the
effective size cmd architecture of the network. An exa.n1ple of learning in a
two layer network is presented. Plausible modifica.tion of the naive Gibbs
distribution to bias cert;;'Lin architectures is discussed.

Valiant's probably almost correct (PA.C) leaming model [37, 9] is man-
ifestly independent of the form of the distribution of the inputs on which
the system opera,tes. In contrast, in the 3M framewOIk, learning is defined
relative to a specific input distribution which is usually assumed to be "well
behaved". Nevertheless, relatively little a,ttention has been given to the in-
fluence that the shape of this distribution might have on t11e easiness of
learning a task. Section 5 d-iscusses the effect of the shape of the input dis-
tribution on the nU111ber of ex;;cmples needed to learn a classification task.
An example of perceptron learning with an input distribution that consists
of a Gaussian tni:;;i'ure is presented. Sections 4 and 5 contain a preHminary
presentation of new results that will be l'eported in detail elsewhere [4, 5].
Con-eluding f(~m;;u'ks are given in Section 6.

.,-:;
~ Statistical .J\1ecllanics of Learning from Examples

2.1 Gen.eral ]F'rarnework

Vie consider here a determi:nistic system that operates on an lv.1--dimensionaJ.
input space according to 0" = u('VI; S). Here S is an Ai-component vector

Si (-i = I,..., Iv'1), representing the inputs to the system, and W denotes
the N pararf.leters \iVi (i = 1,..., iV) that specify the system. The output
of the system is denoted by 0"which for simplicity will be assumed to be a
single real l1umbel'. Using the language of neurailletworks we wiJJ call VVi
the "weights" of the system. The weight space is characterized by a prior
measure d;AW) defined on the N-dimensional space of W.

The goa.l of learning from examples is to find a set of VVi that yields
a good approximation to Cutarget function O"o(S). The system is provided
with a set of eJ:mnples consisting of P input-output pairs (SI, 0'0(81)), with
l =: 1,..., P. VIe assume that each input vector SI is chosen at random
from the entire input spa.ce according to some normalized a p'T'iori measure
denoted dl-&(S).

Learning in the framework of statistical nlechanics is based on the
training energy

p

E(W) =: L E(VV;SI) ,
1==1

where the e1'7'OT'fttnction E(W; S) is zero if a(W; S) =: 0'0(8) 2,llQ positive
otherwise. '1'he performance of a, given network Vv' on the vv'hole input space

(2.1)

..----
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is measured by the generalization junction, defined as the average error of
the network over the whole input space, i.e.,

(2.2) r ,
f(W) = J a/AS) E(VV; S) .

\Ve distinguish between learning of realizable rules and unr'ealizable rules.
,

Realizable rules are those target functions O'o(S) that can be completely
realized by at least one of the networks in the weight space. Thus in a
reaEzable rule there exists a. weight vector vV* such that

(2.3) E(VV*, S) = 0, for all S ,

or equivalently, E(W*) = O. An unrealizable rule is a target function for
\which

(2.4) "min = min f (\V )' > 0 ,

W

In the 8M framework the learning process generates a Gibbs distribution
in the weight space,

(2.5) P(W) = Z-le-{3E(W) ,

where ,8 = '1'-1 characterizes the width of the Gibbs distribution. The
normaltzation fa.ctor Z is the partition function

(2.6) Z = J df.!.(W) exp( -,8E(W)) .

I
.Nate tha.t P(V/) has been defined relative to the prior measure d;..t(W).

This is termed Gibbs learning. Its performance in a given task is evaluated
by averaging the performance of a given network W with respect to P(W).

This average is called a thermal average, and will be denoted by (-. -IT.
In most cases, the thermally averaged quantities are further avera.ged with
respect to the sampling of examples. This second average, called a quenched
average, is d<moted by ((...)) == J TIt d;..t(st). In particular, the average
training and gen,emlization error's are given by

(2.7)

(2.8)
Et(T, P) -- p-l(( (E(W))T))

Eg(T,P) = (((E(VV))T)).

The entropy S is defined by

(2.9) .(l('1',P) = - / d;..t(W)(( P(vV) In P(VI) )).

The entropy per weight will be denoted by s = S / N.

I ~I
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2,2 The Thermodynamic Limit

Classical statistical theory of learning froHl examples is usually concerned
with the performance of a system in the limit of a large size of training
set, namely, P --t 00, while other parameters, in particular the size of the
system, N, are held fixed. Thus, many of the results are applicable only
in the limit where the generalization error is near zero or near its minimal
value troin. In contrast, statistical mechanics is useful primarily in the limit
of many degrees of freedom, i.e., N --t 00. A main reason for this is the fact
that in this limit the distribution of quantities such as (g and ft are sharply
peaked about their thermal average so that those averages represent the
typical behavior. It should be stressed, however, that the 8M formulation is
well defined for arbitrary system size, and in some cases, useful theoretical
results ca,n be derived from. it ~which do not depend on N being large (an
example will be mentioned later).

In the case of learning from examples, definition of the thermodynamic
limit also requires specIfication of how the number of examples depend all
N. The appropriate limit is N, P ~, 00 while the ratio

(2.10) 0: == PIN

is,held fixed. Note that the temperature T is also held fixed. This definition
is reasonable since it is expected that for large N appreciable reduction in (g
requires number of examples that is of the same order as N. i,From the Sf,,!
perspective, the above scaling ensures that the energy which is proportional
to P, competes witIt the entropy, which is proportional to N.

Severa1 qualifications to the above scaling assertion are worth mention-
ing.First, for some problems the above scaling does not hold at zero T.
A simple example is a perceptron with N inputs and a linear otttput that
lea.rns ~ rule deriv,,,d by a simil"cf perceptron with binary weights. If the
weights of the student are also constrained to binary va.lues then Eg(a) = 0
at T = 0 for a > O. In this case, the appropriate scaling of P is probably
P ex N f(1n N)-'l.:with a positive exponent x (For details see the section on
linear perceptron with discrete weights in [32]). Nevertheless, in problems
involving dichotomies (i.e., thresholded outputs rather than linear outputs)
or in cases where the weights are continuous variables, the above scaling is
generically expected to hold for T :::: 0 as well.

Another point is, that in general there may be more than one natural
way of sC3Jing up the size of the system. Estimating N in real life learning
systems is another open issue. In particular, redundancy in the inputs
may generate strong correlations in the weights even if a pr£ori they are
independent variables. iUSb, the effect£ve size of the system that participates
in the leanling may be smaller than the total size N. This last issue will be
discussed ill Section 4.

One reason why Gibbs learning is a good model for learning lies in
the general property that jar any fixed T, increasing 0: leads to a good
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generalization, i.e.,

(2.11) tg ---+ tmin , tt .-+ tmin , a ---+ 00:, T fixed.

Another general property of Gibbs learning is concerned with the relation
between generalization and training. Using the definitions Eqs. (2.7) and
(2.8) we have shown that

(2.12) tt(T, a)::; tg(T, a)

for all T and a.

An interesting question is whether reducing T is a good strategy for
learning. Thermodynamics ensures that £t will decrease with T. However,
3,S far as We know, fg can in principle have a minimum at non-zero T (for
fixed (~). Cases where f.g does not change with T below some critical value
are known. Furthermore, approximate solutions of several models oflearning
unrealizable rules yield a minimum of (g(T, Q) with respect to T, at non-zero
\'a111es ofT. Unfortunately, those solutions suffer from an instability, known
as replica symmetry breaking insta.bility (see the following paragraph), and
it is not knovrn whether the exact solutions will have this property as well.
(For deta.ils see [32].)

2.3 Theoretical IvIethods

Here I briefly connnent on the tvvo main tools that are used in the theoretical
analysis of the properties of the Gibbs distribution, Eq. (2.5). They are the
replica method and the mean-field theory. The replica method deals with the
evaluation of quenched averages [12J. In particular, the important quantity
(( In Z )) is evaluated using

(2.1:3) ((1 Z )\ - 1. d((zn ))
-n I-UTI

dn-+O n
The r-eplica trick is to evaluate ((zn )) for positive integer n , by replicating
the systemViT (with the same set of examples) n times, and then analytically
continue ton = O. .For Z of J~q. (2.6) we obtain

(2.14) "
n

(( zn)) == J n dp(W") exp( -PG[WaJ) ,
.

0'=1

where G is

(2.15) G[v'Va] = -In JdjJ(S) exp (-/3 t f(W"'; S) ) .
\ a=l

Thus, in the replica formalism the number of examples appears a.s a
prefactor in the exponent of Eq. (2.14). All other example dependence has
been removed, so that the replicated energy G depends only on the form

-

I
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or feW; S) and on the nature of the a priori measure on the input space,
df1( S).

To evaluate the thermodynamic limit, one should calculate

lim Jim N-1d(( zn ))/dn.N-+oo n-+O

However, in most cases the only feasible procedure is to take first the limit
N -+ 00 and then n -+ O. The interchange of order oflimits has been justified
for certain spin-glass problems by van Hemmen and Palmer [38, 39]. Most
probably, their arguments can be extended to the present class of problems
as well.

In many of the learning problems, one can evaluate Eq. (2.14) in the
limit N -+ 00 by expressing it as an integral over few integration variables
(the number of which remains finite in the N -+ 00 limit) and evaluating
this integTal by a saddle point method which, in principle, is exact in the
N .-. 00 limit. The resultant solution is also known as mean-field theory.
The difficulty with this method lies in the extension of (( zn )) from positive
integer n to real n, and in part.icular to real n near O. For any positive integer
n ~ 2 the correct saddle point is one which does not break the underlying
symmetry under permutation of the replica indices. The naive procedure
consists of calculating the replica symmetric saddle point for integer n ~ 2
and taking the n -+ 0 limit by treating n a,s a general real number. However,
in m,M1Yimportant cases, the replica symmetric theory can be shown to be
wrong. In these owes one must make the extension to real n ::; 2 using
saddle points that break the symmetry of permutation among the replica
indices. The saddle point with broken replica symmetry that, in the n -+ a
Emit, presumably yields the exact result for limN-.oo(( N-l1n Z )), has been
studied in detail in the spin-glass problem. The physical implications of
the replica symmetry breaking have also been elucidated [27]. These results
apply also to problems of learning from examples. However, evaluating

the saddle point equations with broken replica symmetry are, except for
special ca,ses, extremely difficult. Moreover, adequate justification for the
procedures involved is still lacking. Several concrete examples of problems
in percept1'011 learning that involve replica symmetry breaking are described
. "') 4. 32 -j11l lv ~,

.'

2.4 I-Iigh Temperature Limit

This limit is defined so that both T and 0: approach infinity, but their ratio
remains constant:

(2.16) (30: :::: finite, 0:-+00, T-+oo.

In this lirnit E can simply be replaced by its average Ff(W) as the

:fluctuations', 4E, coming from the finite sample ofrandomly chosen examples
can be ignored. The Gibbs distribution reduces to the following simple form

(2.17) P(Vv) :::: Z-1 exp( - N (3Q:f(W)) ,
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(2.18) Z = j dp,(W) exp( -N (3O:f(W))

where f(W) is the error function defmed in Eq. (2.2). LFrom theoretical
point of view, the simplicity of Eq. (2.17) lies in that one does not have to
resort to complicated techniques such as the replica method, since quenched
aNeraging is not needed. Note that even in this limit good generalization can
be a.chieved. In particular, as the effective tempera.ture T /0: decreases, the
network approaches the optimal weight vector W*, which minimizes f.(W).

Further insight into the nature of the lea.rning in this limit is ga.ined by
writing

(2.19) z = jdf.exPN(s(f)-(3O:f.) .

The function S(f) is the entropy per weight of aU the networks with
f(VV) = f, i.e.,

(2.20 ) s( f) ==lV-1In j dJ1{W) 8(fCW) - f) .

In the large N limit the expected generalization error is simply given by

J2.21) (30:= 8s/8f .

Thlls, the properties of the system in the high-T limit a.re determined
completely by the entropy as a. function of the generaliza.tion error. Lastly,
a.n importa.nt fea.ture of learning a.t high tempera.ture is the 18,ckof difference
between the expected training a.nd genera.liza,tion errors, i.e., 109((30:) =
ft((3a).

2.5 Zero T Learning

In the limit of j3 --+ 00, the Gibbs distribution collapses to

(2.22) mf\iV ) - Z
. -1 ,

("TWW . )!/~ 'Iv -- U - m,.n

where Wmin Ininimizes the tra.ining energy. When the ground state of E is
not unique then the zero T learning selects one of these vectors at random.

The zero T limit is useful particularly in realizable problems. Here the
grolind state of E is zero for all a and the performa.nce depends purely on the
statistical properties of the veTsion space, namely, the spa.ce of a.ll weights
that are consistent with the givsl1 exa.mples. In the ca.se of a dichotomy (i.e.,
::1::1Olltput) tIw volume of (;he vcrsion space is given by

(2.2:3) j
. p

Z = rljl{W) n0 (CTo(SI)a(Vl; SI))
LoJ

wher/) 1 J.'IIJlS over lhe P !c'x;1wpll's. JJlcJ'ci:1siug P inJj)ro\'l's tJJ',' pcrfoJ'IJlanCe

by sluilJkillg tlu! versioJl SpdCC nnLiJ. oJily {;l1c {;,lTgct \\'ciglr{; v'.'dor n'lnains.

I
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However, this process not only reduces the entropy of the solution space but
may also modify its shape. Therefore there is no simple general relationship
between S, and Eg even in zero-T lectrning, as will be discussed belO'\v.

In the thermodyna.mic limit, Gibbs learning in general, and at T = 0

in particular, may exhibit rather unexpected behavior. The version spa.ce
may break up into several effectively disjoint subspaces. In such a case its
volume, Eq. (2.23), will be of the form

(2.24)
K I<

Z = '\'"' Zk = ,""" eNs.,.
L-..J .1-4

k Ie

In cases where the subsp8xes are related by a symmetry operation a11
the entropies Sk may be equal For instance, fully connected multi-layer
networks may possess permutational symmetry, where permuting among.
the hidden units of each hidden layer generates an equally good set of
weights, see [3,13,28,29] and Section 3 below. In the absence of symmetry,
generically one Sk Vim be larger than the rest. The subspace with the
maximal entropy will dominate the sum in Eq. (2.24). In other words, with
probability approaching unity as N -4 00, the zero T lea.rning algOTithm
viill select TN th,,"t resides in the subspace with the maximal entropy. The
other, subspaces represent meta.stable sta.tes. Their contribution may still be
important in that a learning dynamics which only approximates the zero T
learning may end in one of the ~m.eta8table states. Examples of met.astability
in perceptron lea.rning and their relevance to the dynamics are discussed in
[32]. Realizations of Eq. (2.24) that are speci~Ficto multi-layer networks will
be discussed in Section 4.

Most of the discussion that follows will be within the framework of zero
T learning.

3 Learning Curves: SUXlnnary of Results

3.1 Smooth N ehvorks

An interesting class of networks for which a universal behavior of the learning
curves for hrge a exists is the class of smooth networks. They are defined as
having continuously varying weights and an error function E(W; S) that is
twice differentiable with respect to \V in the vicinity of the optimal weight
vector W*, which minimizes E(W). At large P the Gibbs distribution is
sharply peaked around \iV"'. Expanding In P(\iV), vIe have shown that its
form near the optima.l vector is Gaussian with a width that scales as l/VP.
Since the deviation of Et and Eg from tmin is quadratic in 8"\"1it follows that
their tail for large P ha,s a 1/ P form. In the T = 0 limit Volehave obtained

(3.1) (
TrVU-l

)Eg(P) = Emin + -2P - + 0(P-2) .
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,,(a) = 'mJn - (T,~~-l) + O(P-') .

The matrix Uij is the Hessian of the error runction at the optimal weight
vector W*, i.e.,

(3.2)

(3.3) Uij = Jdp,(S) 8;13jf(VI*, S) .

The symbol 8, denotes 8/ 8Vlh The matrix Vij is

(3.4) Vij = Jdp,(S) 8if(W*, S)8jfCW\ S) .

The above resu.lts predict an important relationship between the expectc
ed training and genera1ization errors at T = O. According to Eqs. (3.1) and
(3.2) both errors approach the same limit f with a 1/ P power law. The
coefficients of 1/ P in the two errors 8,re identical in ma.gnitude bu.t different
in sign yielding

(3.5) I!(t
- - Pt,'[

/Jp --
oP'

P ---700, T = 0,

This result can be used to estimate the expected generalization error fTOm
the measured training error in smooth networks.

Lastly, we vvould like to emphasize that contrary to some apparent
misconceptions [2J our results for smooth networks have been derived by
the replica theory using only the limit of large P (and not large N). The
derivation is therefore valid ror arbitrary system sizes. In the limit of large N
we exp~;ct that TrVU-1 scales as N. Thererore, in the thermodynamic limit,
Eqs. (3.1) and (3.2) can be viewed also as expansions in l/a. Also, in the
derivation of Egs. (3.1) and (3,2) no assumption has been made regarding
the nature of the learning system, apart from the smoothness requirements.
Thus, our result for smooth networks is to our knowledge the first universal
prediction on the asymptotic shapes oflearning curves. It demonstrates the
usefulness of the replica method.

3,2 Stochastic 1\1achines

An interesting dass of learning, systems consists of learning a stochastic
input-output relation described by the conditional probability P( alS; W 0)
where VVo denotes the vector of parameters specifying the target distribution
that generates the data. The asymptotic shapes of the learning curves of
this system have been derived recently by Amari and Murata [lJ. As I show
below, this system is an interesting special case of the general results for
smooth networks Egs. (3.1) and (3.2).

Given a pet of P input-output pairs one can train the system with the
log-likelihood tTaining energy,

(:3.6)
p

E(VV) '::: - 2:1nP(at/SI;VV) .
1=1
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This energy is of the form of Eq. (2.1) a,bove with the identification

(3.7) E(VV;S, a) = -In P(J!S; ~7).

TIllis our general results apply here as well. Note that the quenched average
consists here of

((...)) == j IT dp(SI) dc/ P(alISl; V\To)....
I

In particular if In P is twice differentiable near W 0 then these systems fall
under the category of smooth networks. Evaluating Eqs. (3.3) and (3.4) and
using the normalization property of the conditional probabiUty it is easy to
show tha.t
(':1. 0 )\ t,.<.u

(3.8)

Uij == Vij = (((oilnp)(ojlnP)))

where the derivatives are evaluated at the target weights \Vo. This matrix
is known in statistics as the P-isher -informat-ion matr-ix [11, 1]. Since U and
V are identical, TrVU-.1 = N. Hence Eqs. (3.1) and (3.2) reduce to the

simple form
1

tg(P) = ErrUll+ -2Ct
1

C t(P '\ - C . - ~
c. J -- Cnllll on:Ga

in agreement with Ama.ri and Murata [1]. It is interesting that in the case
of a log-likelihood error function, the asymptotic behavior of Eg and Et is
independent or the details of the problem. It should be stressed, however,
that this simple form holds only when the target distribution is contained
within the space of the trained one, i.e., that the architecture of the learning
machine contains Woo

Learning probabilistic rules has been studied also within the framework

of PAC learning [21] and the Bayes approa.ch [19].

(3.10)

(" 1 .1 \0. ,,)

3~3 Learning Realizable Dichotomies

When the output of the system is thresholded the energy function is not
smooth and the above results are not 'laUd. Considerable attention has
been given to the rate at which the entropy of the version space decreases
as examples are added. The -information ga-in per example (in bits) [36, 20]
is defined as
(3.12) I( a) == -(In 2)-103/80'. .

Interesting bounds on Egfor zero T learning have been derived in terms of
I( a) [20]. They read

(3.1.3) h-1(I(P)) ~ Eg(P) ~ ~I(P)

where h-l is the inverse of the function h(x) = -(ln2)-1(xlnx + (1-

x)ln(l - x)), with 0 ~ x ~ ~. Consequences of these bounds .will be given

below.

I
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&\ Dichotomies with continuous weights: This cla.ss of systems

consists of learning dichotomies tha.t ca.n be expressed as

(3.14) o-(S; vV) = sign (f(S; Vi))

where J is a smooth function of W. An example is a multi-layer
network 'with continuously varying 'weights and sigmoidal hidden units
but a thresholded output. This class has been studied recently by
Amari et a1. [2J. At large 0: the weights of the system W wiJl be close
to the target vector Vlo and Eq. (3.14) reduces to

(3.16) o-(SjW) ~ .sign (J(S; vVo)
+ vwJ(S;\Vo)' 8'Vl))

where I5W ==""vV-- "VVo. Thus the enol'S are restricted to a volume of
inputs of a width of the order !8vVj around the decision hypersurface
J(:3; Wo) = O. Assuming a smooth measure on the input space, one
obta.ins 'roughly'

(3.16) z ~ Jd( 6W)e-P/8W/ ~ p...N

fTOm which it follows that .5 :::::;-..In 0: as P -7 00 yielding

«<"'7 )\ v.L I
.

\ 1110:J~- , p.-+ 00.\ }
(In 2)0:

Under these conditions Olle expects

(3.18) N£l£g ~ - , P -7 00 .p

The general results, Eq. (3.17) and (3.18), have been derived by Amari
et a1. [2]. They are consistent with the known specific 3M solutions
of learning dichotomies in networks with continuous weights [32J. For

'''c d 'J'~' l
'

~ [n 3 <)" 1mOJ.e ,eu,,,,.[ s "ee .L, '),'

At present, the general dependence of the coefficieilt £1 on the
properties of the system is not known. In fact, substituting Eq. (3.17)
into Eq. (3.13) yields

(3.19) In 2 1
< £1 <: -- .2/1n al - - 2(ln 2)

Note that only the upper bound provides a useful bound on £1.

Equa.tions (3.13) and (3.17) imply that as P increases the information
provided by an additional example vanishes. This is a. consequence
of the ran,dom sampling of each. new example. In contrast, certain
algorithms'f6r drawing examples by queries [31, 14J have the property
that
(3.20) Em I(P) = 100 > 0 .

P-+oo

I
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In fact, this property may serve as a qualitative distinction between
random sampling of examples and good query algorithms. For more
details see [31, 14].

It is also of interest to consider 1(0'.) and tg( a) in the limit of small

o'.. Let us assume for simplicity that the target rule divides the input
space into two subspa,ces of equal probability, and likev,rise that the
prior measure on VI is unbiased to (J' = +1 or -1. It can then be
shown that, for continuous \iV, the entropy takes the form

(3.21) s(o'.) ~ So -- (ln2)O'. -[- 820'.2 , 0'.-+0

where So is the entropy of the prior measure on V\T and 81 > 0 is a
constant that depends on the task and system. Under these conditions
one obta,ins

(3.22)
1
- --- t: ~ ("a a -+ 0
2 -g -",

with E2 > O. Using the bounds Eq. (3.13) with

(3.23) S2O'.
I(O'.)~l--

In 2

yields
1 82

.;c; ::; £2 ::;
2ln 2

.

Here again only the upper bound provides a useful bound on (2.
l<urther study is needed in order to understand the dependence of
the coefficients £1, and t2 on the system properties, and to derive tight
bounds on them.

(3.24)

The relation between entropy and generalization in zero T learning
will be discussed again in Section 4.

'" Dichotomies y,rith discrete weights: The most dramatic departure
fron} the gradual power law predicted above occurs in learning
rea1iza1::,]e dichotomies where both the target and the space of W
consist of only discrete valued weights. An example is a perceptron
learning a perceptron dichotomy, 8ign(S. W 0), where all the weights of
both 'student' and 'teacher' perceptrons are binary valued. In this case
it has been shown that a discontinuous transition to a perfect learning
from a state with large fg to a state with Eg = 0 occurs at a critical
value of o'.. This transition is sharp only in the large N limit. Otherwise
it is smeared over a narrow range of a near o'.c. The discontinuous
transition to perfect learning in single layer [15, 34, 32, 7] and two..
layer [35, 28, 22] networks with binary weights has been studied. In
other cases involving non-smooth weight space, learning wrves may
show exponential ta,ils or power laws with powers smaller than -1.

I
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3.4 Learning Unrealizable Dichotomies

Very little is k.nown about the general properties of learning curves in
unrealizable non-smooth tasks. All known SM solutions of models oflearning
unrealizable dichotomies with continuous weights predict a zero T behavior
of the form
(3.2.5)

1
fg(U)-' fmin ex 0-:-2 .

Examples are learning by a perceptron a dichotomy that is not line,uly
separable [18], or a perceptron learning a rule corrupted by noise [17].
U nfortunC\otely, (he underlying theories are de:nnitely not exact beca.use
they are based on a replica symmetric saddle point, which is unstable in
these unrealizable cases. Therefore, it is unclea.r to what extent the above
prediction holds, even for these specific cases. Deriving a general form for
the asymptotic shapes oflearning curves in learning unrealizable dichotomies
with smooth weights rernains an interesting open challenge. At present, it
is unclea,r whether PAC theory can yield interesting bonnds in the case of
unrea.liz2,ble rules,

4 The E.volution of Architecture in JV1ulti"Layer Networks

Although the le;u'ning algorithm superficially treats all the 'weights equally,
ditferent \veightsma,y have very different innuence on the emergent network,
partlculij,rly in large multi-layer cOIlvergent networks. An example is a :fully
cOlmected two-layer :network with lvI inputs, ](0 hidden units, and a single
output. For simplicity we assume that Ko is held:fixed while AI approaches
00. The first layer weight vectors, i.e., those connecting the inputs to the
hidden units are denoted by Jk , k = 1, ..., Ko. The second-layer weights are
denoted by fVk. In such an architecture the direct entropic contribution of
the relatively few IIV's is negligible. On the other hand their value determines
in general the function of the first layer 3,nd therefore also the entropy of the
whole network. Hence, the averaging over all weights in the version space is
effectively broken into

(4.1) Z = TTW exp (Ms(W))

where .!vIseW) is the entropy of the first-layer weights for a fixed set of W.
Equation (4.1) can be viewed as a Sllm over all subspaces of the version space
corresponding to different effective architectures. LFrom the discussion of
Eq. (2.24) it follows that in the limit of large M only the architecture with
the maximal entropy will sUIvive.

To illustrate this point, let liS consider learning a ta.rget rule generated
by a two-layer,network, also called a cornmittee ma.chine:

(4.2) ([0(8) = sign
(t s-ign(J~. S)~

k=l )

-

I



395

230 H. Sompolinsky

where the ]( vectors .13 are J1:[-dimensionaJ vectors, where Ai denotes the
dimensionality of the input space. Let us assume that the prlor weight space
in which learning occurs corresponds to aJl two-layer netV'.rorks of the form

(4.3) ( go \
0"(8) = sign \~

Wle sign(Jk.
S))

with ](0 > J(, J k . .Jk
= 1, and each of the Wk is restricted to the values

0 and 1. Then the weight space consists of all committee machines of the
form

(4.4 )
(K' \

sign I 2: sign(Jk. S) I
\Ie:l }

where 1 :S ](' :::; Ko. To avoid ambiguities I will aSSUrD.ethat all ]( and
[(' are odd. Note that those first-layer vectors that are connected to the

hidden units with zero Vv's, i.e., Jk with k = J{' + 1, ..., ](0, do not affect the
output of the network hence their values are not affected by the examples.
Committee with ](' = 3 learning a perceptron rule 1( := 1 has been recently
st1:l.diedin [28]. The case K := 1(' has been recently studied in [29].

Here I 'want to a,ddress two questions: First, which committee size ]('
wiTIthe zero T ler1rning algorithm choose? Secondly, which size is optimal
for generalization? Obviously, the answer may depend on a == P /M. For
13~rgea, it is clear that ](' will be at least equal to ]( as a smaller committee
will not be able to satisfy the given examples. What is the situation for
sman a?

To investigate these issues, we have calculated the generalization errors
and entropies of committee machines of size ](' learning at zero T target
committee of size ]( with orthogonal perceptrons, Jh . J~ := Ok/, in the limit
of sman a [4]. For Eg we have found

(4.5) Eg(J{',K,a) ~
~

- 2(fI<:fI<:,?a

where

(4.6)
Vi(

(
](--1

)
fi{ == 7r2K-l (I( - 1)/2

.

Since ff{ is decreasing with l{, Eq. (4.5) implies that a.t small a the optimal
architecture from the point of view of generalization is always

(4.7) ](' = 1

which is a, single layer perceptron! This conclusion is independent of the
size J( of the machine that generated the rule. The moral of this result
is the following: when the system is far below the capacity, squeezing the
information from the available examples into the smallE~st network maximizes
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the generalization capability. The results for the entropies are less intuitive.
V\Tehave found at small 0:'

(4.8) S(J(I; K; O:')/M ~ So (I{o) - (In 2)0:' + SeX,
](1) 0:'2

where So(Ka) is the prior entropy of the space of Xo vectors Jk, and

(4.9)
(,{

'f T.7i) f 2 (I
,, )2

'-'
\)J.,.II. ::: J K --- K - J KI .

Note that in Eq. (4.8) we ha'le calculated the total entropy of Ko vectors
JI, including the prior entropy of the Ko _](1 vectors that a,re 'passive', as
they do not contribute to the output of the network.

Equation (4.9) implies that at small a the committee ma.chine with the
maximum entropy is the one that matches that of the target committee.
Thus the zero T learning wm pick th~ a,rchitectu.re with

(4.10) "0""'/ [.,"it == J.l .

The reason for this is as follows: 011 the one hand, using a small value of 1(1
leaves an the vectors JI with 1(0 > l > XI out of the learning process, and

therefore free from ;my constraints. On the other hand, the constraint due
to the examples that are imposed on the 'active' vectors JI with 1 :S l:S Ie
are more stringe;nt than if the learni:n.g would have been distributed over a
larger network-Balancing the two opposite trends le:ds to the result Eq.
(4.10). .

It is interesting to compare these results with the general results for
sma.ll a, Eqs. (3.21) -- (3.24). In particula.r, the upper bound of Eq. (3.24)
would suggest that the optimal tg win be that with the highest entropy. This
is not born out by our results, which say that tg is optimal for a perceptron,
even though ill general it is not the architecture with the highest entropy.
The reason for the different trends of the entropy and generalization error
is the fact that Eg is related to the ciipacity of the part of the network that
participates in the learning. It is therefore unaffected by the presence of
large parts which are 'passive'. In contrast, the learning algorithm is in
principle affected by the total entropy of the weight space.

The above results suggest a useful modification of the Gibbs learning
algorithm. Instead of weighing different architectures with the same a priori
pro1)ability as in Eq. (4.1) one should add priors biasing in favor of small
architectures. This can take the form

.
\(4.11; Z = Trwexp(k[s(W) + AIK(W)u)

I

i
'\

\

I
\
I

'\

II,

where K(W) is the number of acti'ue hidden units or equivalently the
number of non-zer? second-layer weights. Note that the bias in favor of
a srnan architecture has to be exponential in M to overcome the difference
in entropies between the architectures. This modification is related but
not equivalent to the common practice of a.dding weight decay terms to the
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training cost function. A simple weight decay term vvill favor weights that
are small in magnitude, everywhere, whereas here the bias favors specificaUy
sma)} number of non-zero second-layer weights.

In the a,bove example, modifying the zero T learning a,ccording to Eq.
(4.11) with a fixed u > 0 will result in favoring the perceptron for sufficiently

small a. As a increases the architecture will be forced to change to larger
1(1 until 1(1 = K is reached for sufficiently large a. It should also be noted
that the zero-T result, Eq. (4.10), holds only for the case where the teacher
vectors J~ are orthogonal. In contrast, when they are highly overlapping,
even the simple zero-T learning win choose gl < J{ for smaIl a, leading to a

growth oHhe network as CIincreases. We are currently studying the sequence
of a,rchitecture modifications that occur in this problem as a increases [4J.
Another phase transition that happens in this problem is associated with
the symmetry under exchanging the dHferent vectors JI, 1 ::; I ::; ](1. At low
a the Gibbs state will respect this symmetry, whereas above a critical value
of O~the version space will be broken into disconnected regimes, with each
of the subspaces breaking the global permutation symmetry [3, 28, 29].

5 The Role ofInput Distribution

In aJl the network models studied thus far using statistical mechanics (32],
the relevant scale of P for the reduction of Egis the number of independently
varying weights, N. Results from the PAC formalism suggest that the
scale of the lea,ruing curve is the Vapnik-Chervonenkis dimension, which
for feedforward neural networks is closely related to the number of weights
[8J. These theoretical results seem to imply that good genera.lization
performance generally requires many more examples them independently
varying parameters (at least continuously varying parameters). This result
seems to contradict wha.t is often observed in practice. For example, layered
feedforwa,rd neural networks ha.ve been trained to generalization error rates
of 4 - 5% in iso1ated hand-printed digit recognition with a number of
examples roughly the sa,me or even considerably less tha.n the number of
parameters [24, 26J.

Baum [6J has suggested tha.t such empirical results might be expla.ined
by a, lea,rning theory for more "realistic" input distributions. Smoothness

of the input dishibutions is insufficient to explain the apparent paradox
since the 31v1results assume 3, well behaved input distribution. Thus, one
has to assume an input distribution that is not only smooth but also has a
shape th;,\t 'matches' the specific task at hand. It is thus of theoretical and
pr.actical interest to understand how the shape of the input distribution will
affect the number of examples needed for achieving a. good genera.lization.

'liTe ha.ve recently studied this issue in cases where the inputs are
generated by Gauseian mixtures [5]. To illustra.te the results, I will consider
here the simple case of a. perceptron learning a target rule generated by a
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perceptron
(5.1) 0-0(8) == sign(Wo' S)

with W . 'Ill = Wo . \Vo = 1. Solution of this problem with an input
distribution consisting of an isotropic Gaussian centered at the origin [17, 32J
shows that in the limit of large a fg at zero T is given by

(5.2)
0.625

f.g ~ -- , a --+ 00 .a

This power law is consistent with the general result for learning a realizable
dichotomy with continuous weights, Eq. (3.18) above. IIere we consider the

. same problem, but with an input distribution which is more appropriate

for a pattern classification problem. It consists of a mixture of two equaJly
weighted Gaussians centered at ::l:u\tv 0

P (S) --
1

" ( I~ . ,Xl
1

2/" ) '
1

" ( 18 "OIT
1

2 /2)~. - '2(2'lr)N/2exp
-~-Uno ,L, T2(27r)N/Zexp -I +Uno' .

(5.3)
The parameter 'U.meaSUIes the distance between the Gaussian centers
(relative to their width vrhich is taken here to be 1 in each direction). It a.lso
measures the degree by v{hich the input distribution matches the target'rule.
The larger u is the smaller is the volume of inputs that lie in the decision
boundary of the rule VV0 . 8 = O. The previously studied perceptron rule
corresponds to u = 0,

Solution of the 3M of this problem reveals the following interesting
phenomenon [5J.' For any fixed u, the large a behavior of f9 is independent

of u. It is given by Eq. (5.2) with the same prefactor. The origin of the
invariance of the asymptotics to changing u is that although reducing the
density of inputs near the decision boundary reduces the chance of an error
for a given "\lv, it also reduces the effectiveness of the training set for the
same rea,son. The two effects cancel each other exactly in the large a regime.
Thus, on th.e basis of the large 0: behavior one would naively conclude that
u does not playa significcwt role. This, llO'wever, is incorrect. For large u
the asymptotic behavior appears only in extremely large values of a and
extremely low values of (g. Thus, for large u, the asymptotics, evaluating
by taking the limit of large sample size, keeping the rest of the parameters
fixed, is completely irrelevant.

In fact, we find that for large u, tg obeys (in the interesting regime where
it is still of order 1) the following sca.ling law

(5.4) fg(a,u) = f'(O:1l2)

where E(x) is a>monotonic decreasing function of x. Thus for large u the
number of examples scales as

(.s.5) p~ ~.11.

...
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Study of mOl:e general cases (e.g., multi-layer networks, more than two
clusters) indicates that the scaling law Eq. (5.4) is a general characteristic of
the zero T learning algorithm. We have also found that other algorithms, in
particular the Hebb rule, are much more efficient than the zero T algorithm,
in the case of large 'U. Their performance can be described by a scaling law
of the form

(5.6)
N

P ~- 4 .
'U

Comparison with the scaling law Eq. (5.5) shows that for large u the number
of examples needed for learning the task with the Hebb rule is negligible
compared viith that required by the zero T training.

Another interesting finding concerns with the Annealed theory oflearning
from examples [30]. This theory replaces the quenched average (( In Z)) by
the much simpler quantity 1n(( Z)). As discussed in detail in [32], it is
usually an uncontrolled approximation to the correct qttenched theory. We
also discuss there the circumstances where this theory yields a reasonable
approxilna,tion to the quenched theory. vVe have found that in the limit of
large 'U, a modiJied version of the annealed theory of the zero T learning
becomes exact. This and the above scaling results open new avenues to
theoretical investigations of learning pattern classification tasks.

i~
'C~ Concluding Remarks

Despite significant progress in the theory of learning, many central issues
remain open. An important set of questions that have not been discussed
in this paper concerns the dynamics of learning. vVhat are the costs in
time of executing specific leaming models, e.g., zero T learning? What
is the nature and character of the overtraining commonly seen in learning
dynamics? An important challenge is to understand the implications of
lea.ming theory for simple learning algorithms, e.g., the back-propagation
algorithm. Some aspects of learning in multi-layer networks are still poorly
understood. 0ue issue is related to the determination of the architecture,
which was discussed in Section 4. Another issue is the role of non-linearity
and saturation of hidden units.

FinaUy, I wish to comment on the challenge of understanding natural
learning processes. Learning in animals and humans often takes an all or

none form. This phenomenon, whic11 is the basis of the Gestalt approach
to natural knowledge acquisition [23J, seems to be in disagreement with
the current incremental approach to learning. In particular it is not
accounted for by the gradual bounds on learning provided by the PAC
theory of learning. However, our results regarding discontinuous transitions
to perfectle<!<rning indicate that when large systems are involved, even
learning algorithms that are incremental on the microscopic level may lead
to an emergent sharp transition from a bad to a good learning state at the
macroscopic level. It is thu.s of interest to further investigate the conditions
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that are likely to yield emergent tra,nsitions in learning systems. In this
paper I have consid.ered a particular learning paradigm, supervised leaTiling
by training' with labeled examples. There is a considerable gap bet-ween

current learning models based on this paradigm and realistic models of
learning in biological systems. This ca.lls for more theoretical effort in
understanding the powers of various unsupervised learning pa.radigms, as
'well as simple Hebb-like learning mechanisms.
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