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A neural network is a large, highly interconnected
assembly of simple elements. The elements, called neur-
ons, are usually two-state devices that switch from one
state to the other when their input exceeds a specific
threshold value. In this respect the elements resemble
biological neurons, which fire—that is, send a voltage
pulse down their axons—when the sum of the inputs from
their synapses exceeds a "firing" threshold. Neural
networks therefore serve as models for studies of cooperat-
ive behavior and computational properties of the sort
exhibited by the nervous system.

Neural network models are admittedly gross oversim-
plifications of biology. But these simple models are
accessible to systematic investigations and may therefore
shed light on the principles underlying "computation" in
biological systems and on how those principles differ from
the ones that we have so successfully mastered in building
digital computers. In addition, psychologists use neural
networks as conceptual models for understanding cogni-
tive processes in the human mind. For theoretical
physicists, understanding the dynamical properties of
large, strongly coupled nonequilibrium systems such as
neural networks is a challenging problem in its own right.

Attempts to model the working of the brain with
networks of simple, formal neurons date back to 1943,
when Warren McCulloch and Walter Pitts proposed
networks of two-state threshold elements that are capable
of performing arbitrary logic operations.1 In 1949, Donald
Hebb, the psychologist, proposed that neural systems can
learn and form associations through selective modifica-
tions of the synaptic connections.2 Several adaptive
networks, so called because they could learn to perform
simple recognition tasks, were studied in the 1960s. These
included Frank Rosenblatt's feedforward network, called
the perceptron,3 and Bernard Widrow's adaptive linear
machine, the Adaline.4 A variety of network models for
associative memory and pattern recognition have been
investigated over the past two decades by several research
groups, including those of Shun-ichi Amari,5 Stephen
Grossberg8 and Teuvo Kohonen.7 Physicists' interest in
neural networks stems largely from the analogy between
such networks and simple magnetic systems. The analogy
was first pointed out in 1974 by William Little.8 Recently
activity in this direction was stimulated by the work of
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Network architectures, a: A feedforward system with three layers, b: A neural circuit. A circuit contains
feedback loops, such as the directed graph 2—*3—*5—*b—+2, that close on themselves. This closure gives rise to
recurrent activity in the network. Figure 1

John Hopfield, who pointed out the equivalence between
the long-time behavior of networks with symmetric
connections and equilibrium properties of magnetic sys-
tems such as spin glasses.9 In particular, Hopfield showed
how one could exploit this equivalence to "design" neural
circuits for associative memory and other computational
tasks.

Spin glasses are magnetic systems with randomly
distributed ferromagnetic and antiferromagnetic interac-
tions. The low-temperature phase of these systems—the
spin glass phase—is in many ways a prototype for
condensation in disordered systems with conflicting con-
straints. Theoretical studies have revealed that in spin
glasses with long-range interactions between the spins,
the energy surface (the energy as a function of the system's
state, or spin configuration) has a rich topology, with many
local minima very close in energy to the actual ground
state.10 (See the article by Daniel S. Fisher, Geoffrey M.
Grinstein and Anil Khurana on page 56.)

Neural systems share several features with long-
range spin glasses. (I will use the term "neural systems"
for assemblies of real neurons.) The spatial configuration
of the two systems bears no resemblance to the crystalline
order of pure magnets or solids. The couplings between
spins in spin glasses can be both positive and negative,
which is also true of the couplings between neurons. And
just as each spin in a long-range spin glass is connected to
many others, so is each neuron in most neural systems.
For example, each neuron in the cortex is typically
connected to about 104 neurons.11

Of course, the analogy between long-range spin
glasses and neural systems is far from perfect. First, the
connections in neural systems, unlike those in spin
glasses, are not distributed at random, but possess
correlations that are formed both genetically and in the
course of learning and adaptation. These correlations
alter the dynamical behavior of the system and endow it
with useful computational properties. Another major
difference is the asymmetry of the connections: The
pairwise interactions between neurons are, in general,
not reciprocally symmetric; hence their dynamic proper-
ties may be very different from those of equilibrium
magnetic systems, in which the pairwise interactions are
symmetric.

In this article I will describe how the concepts and
tools of theoretical physics are being applied to the study
of neural networks. As I have already indicated, the
methods of equilibrium statistical mechanics have been
particularly useful in the study of symmetric neural
network models of associative memory. I will describe
some of these models and discuss the interplay between
randomness and correlations that determines a model's
performance. The dynamics of asymmetric networks is
much richer than that of symmetric ones and must be
studied within the general framework of nonlinear
dynamics. I will discuss some dynamical aspects of
asymmetric networks and the computational potential of
such networks. Learning—the process by which the
network connections evolve under the influence of exter-
nal inputs to meet new computational requirements—is a
central problem of neural network theory. I will briefly
discuss learning as a statistical mechanical problem. I
will comment on the applications of neural networks to
solving hard optimization problems. I will conclude with a
few remarks about the relevance of neural network theory
to the neurosciences.

Basic dynamics and architecture
I consider in this article neural network models in which
the neurons are represented by simple, point-like ele-
ments that interact via pairwise couplings called synapses.
The state of a neuron represents its level of activity.
Neurons fire an "action potential" when their "mem-
brane potential" exceeds a threshold, with a firing rate
that depends on the magnitude of the membrane poten-
tial. If the membrane potential is below threshold, the
neurons are in a quiescent state. The membrane potential
of a neuron is assumed to be a linear sum of potentials in-
duced by the activity of its neighbors. Thus the potential
in excess of the threshold, which determines the activity,
can be denoted by a local field

h (A _ y j SJ{t) + 1

/Ti " 2

The synaptic efficacy JtJ measures the contribution of the
activity of the yth, presynaptic neuron to the potential
acting on the rth, postsynaptic neuron. The contribution
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Errors per neuron increase discontinuously as
T—>-0 in the Hopfield model, signaling a
complete loss of memory, when the
parameter a = pi N exceeds the critical value
0.14. Here p is the number of random
memories stored in a Hopfield network of N
neurons. (Adapted from ref. 16.) Figure 2

is positive for excitatory synapses and negative for
inhibitory ones. The activity of a neuron is represented by
the variable S,, which takes the value — 1 in the quiescent
state and + 1 in the state of maximal firing rate. The val-
ue of the threshold potential of neuron i is denoted by 6,.

In this model there is no clock that synchronizes
updating of the states of the neurons. In addition, the
dynamics should not be deterministic, because neural
networks are expected to function also in the presence of
stochastic noise. These features are incorporated by
denning the network dynamics in analogy with the single-
spin-flip Monte Carlo dynamics of Ising systems at a finite
temperature.'J The probability that the updating neuron,
which is chosen at random, is in the state, say, + 1 at time
t + dt is

Rhl(t)) = -
exp( -4/3h,)

(2)

where ht is the local field at time t, and T=l//3is the tem-
perature of the network. In the Monte Carlo process, the
probability of a neuron's being in, say, state + 1 at time
t + dt is compared with a random number and the
neuron's state is switched to + 1 if the probability is
greater than that number. The temperature is a measure
of the level of stochastic noise in the dynamics. In the
limit of zero temperature, the dynamics consists of single-
spin flips that align the neurons with their local fields,
that is, Si(t + dt) = sign(/i, (t)). The details of the dynamics
and, in particular, the specific form of Pih) are largely a
matter of convenience. Other models for the dynamics,
including ones involving deterministic, continuous-time
dynamics of analog networks, have also been studied.

The computational process in a neural network
emerges from its dynamical evolution, that is, from flows
in the system configuration space. The end products of
this evolution, called attractors, are states or sets of states
to which the system eventually converges. Attractors may
consist of stable states, periodic orbits or the so-called
strange attractors characteristic of chaotic behavior.
Understanding the dynamics of the system involves
knowing the nature of its attractors, as well as their basins
of attraction and the time the system takes to converge to
the attractors. In stochastic systems such as ours, one has
to take into account the smearing of the trajectories by the
stochastic noise.

The behavior of the network depends on the form of
the connectivity matrix JtJ. Before specifying this matrix
in detail, however, I will discuss the basic features of
network architecture. Studies of neural networks have
focused mainly on two architectures. One is the layered
network (see figure la), in which the information flows
forward, so that the computation is a mapping from the
state of the input layer onto that of the output layer. The
perceptron, consisting of only an input and an output
layer, is a simple example of such a feedforward network.
Although interest in the perceptron declined in the 1960s,
interest in feedforward networks that contain hidden

layers has revived in the last few years as new algorithms
have been developed for the exploitation of these more
powerful systems. The usefulness of multilayer networks
for performing a variety of tasks, including associative
memory and pattern recognition, is now being actively
studied.13 As dynamical systems, feedforward networks
are rather primitive: The input layer is held in a fixed
configuration and all the neurons in each subsequent
layer compute their states in parallel according to the
states of the preceding layer at the previous time step. I
will focus on a different class of network models, namely,
networks that contain feedback loops. These networks I
term neural circuits (see figure lb). Many structures in
the cortex show extensive feedback pathways, suggesting
that feedback plays an important role in the dynamics as
well as in the computational performance. Feedback loops
are essential also for the function of nervous systems that
control stereotypical behavioral patterns in animals.14

Besides their biological relevance, however, neural cir-
cuits are interesting because the long iterative dynamical
processes generated via the feedback loops endow them
with properties not obtained in layered networks of
comparable sizes.

Symmetric circuits and Ising magnets
The dynamics may be rather complex for a general circuit
of the type described above, but it is considerably simpler
in symmetric circuits, in which the synaptic coefficients
JtJ and Jj, are equal for each pair of neurons. In that case
the dynamics is purely relaxational: There exists a
function of the state of the system, the energy function,
such that at T=0 the value of this function always
decreases as the system evolves in time. For a circuit of
two-state neurons the energy function has the same form
as the Hamiltonian of an Ising spin system:

(3)

The first term represents the exchange energy mediated
by pairwise interactions, which are equal in strength to
the respective synaptic coefficients. The last term is the
energy due to the interaction with external magnetic
fields, which, in our case, are given by

The existence of an energy function implies that at T = 0
the system flows always terminate at the local minima of
E. These local minima are spin configurations in which
every spin is aligned with its local field. At nonzero T,
the notion of minima in configuration space is more
subtle. Strictly speaking, thermal fluctuations will even-
tually carry any finite system out of the energy "valleys,"
leading to ergodic wandering of the trajectories. If the
energy barriers surrounding a valley grow with the size of
the system, however, the probability of escaping the
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valley may vanish in the thermodynamic limit, N~x, at
low temperatures. In that case energy valleys become
disjoint, or disconnected, on finite time scales, and one
says that ergodicity is broken. Each of these finite-
temperature valleys represents a distinct thermodynamic
state, or phase.

The analogy with magnetic systems provides a
number of lessons that are useful in understanding the
structure of the energy terrain and its implications for the
dynamics of neural circuits. Ising ferromagnets with a
constant positive value of JtJ are easily equilibrated even
at relatively low temperatures. Their energy landscape
has only two minima: one for each direction of the total
magnetization. By contrast, a disordered magnet can
rarely equilibrate to its low-temperature equilibrium state
on a reasonable time scale. This is particularly true of
spin glasses; their energy landscapes possess an enormous
number of local minima, of higher energy than the ground
state, that are surrounded by high-energy barriers. A spin
glass usually gets stuck in one of these local minima and
does not reach its equilibrium state when it is cooled to low
temperatures.

I have already mentioned the presence of disorder and
internal competition in many real neural assemblies.
Indeed, most of the interesting neural circuits that have
been studied are disordered and frustrated. (Frustration
means that a system configuration cannot be found in
which competing interactions are all satisfied.) Neverthe-
less there are applications of neural circuits in which the
computational process is not as slow and painful as
equilibrating a spin glass. Among important examples of
such applications are models of associative memory.

Associative memory
Associative memory is the ability to retrieve stored
information using as clues partial sets or corrupted sets of
that information. In a neural circuit model for associative
memory the information is stored in a special set of states
of the network. Thus, in a network of ./V neurons a set ofp
memories are represented as p, TV-component vectors S'',
fx = \,... ,p. Each component S[' takes the value + 1 or
— 1 and represents a single bit of information. The
models are based on two fundamental hypotheses. First,
the information is stored in the values of the JtJ 's. Second,
recalling a memory is represented by the settling of the
neurons into a persistent state that corresponds to that
memory, implying that the states S'' must be attractors of
the network.

Associative memory is implemented in the present
models in two dynamic modes. Information is stored in
the learning mode. In this mode the p memories are
presented to the system and the synaptic coefficients
evolve according to the learning rules. These rules ensure
that at the completion of the learning mode, the memory
states will be attractors of the network dynamics. In
symmetric networks the Ju are designed so that S'' will be
local minima of E. The stored memories are recalled

0.0

Phase diagram of the Hopfield model. The
solid blue line marks the transition from the
high-temperature ergodic phase to a spin glass
phase, in which the states have negligible
overlap with the memories. Memory phases,
that is, valleys in configuration space that are
close to the embedded memory states, appear
below the solid red line. A first-order
transition occurs along the dashed line; below
this line the memory phases become the
globally stable phases of the model. (Adapted
from ref. 16.) Figure 3

associatively in the second, retrieval mode. In the
language of magnetism, the Ju 's are quenched and the
dynamic variables are the neurons.

In the retrieval mode, the system is presented with
partial information about the desired memory. This puts
the system in an initial state that is close in configuration
space to that memory. Having "enough" information
about the desired memory means that the initial state is in
the basin of attraction of the valley corresponding to the
memory, a condition that guarantees the network will
evolve to the stable state that corresponds to that memory.
(An illustration of the recall process is given in the figure
on page 23 of this issue.)

Some of the simplest and most important learning
paradigms are based on the mechanism suggested by
Hebb.2 Hebb's hypothesis was that when neurons are
active in a specific pattern, their activity induces changes
in their synaptic coefficients in a manner that reinforces
the stability of that pattern of activity. One variant of
these Hebb rules is that the simultaneous firing of a pair of
neurons i and j increases the value of JtJ, whereas if only
one of them is active, the coupling between them weakens.
Applying these rules to learning sessions in which the
neural activity patterns are the states S'' results in the
following form for synaptic strengths:

</,,= — f s>;s>;1 AT A ' (4)

This simple quadratic dependence of Ju on S'' is only one
of many versions of the Hebb rules. Other versions have
also been studied. They all share several attractive
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features. First, the changes in the Jt] 's are local: They
depend only on the activities in the memorized patterns of
the presynaptic and postynaptic neurons i and,/. Second, a
new pattern is learned in a single session, without the need
for refreshing the old memories. Third, learning is
unsupervised: It is performed without invoking the
existence of a hypothetical teacher. Finally, regarding the
plausibility of these learning rules occurring in biological
systems, it is encouraging to note that Hebb-like plastic
changes in synaptic strengths have been observed in
recent years in some cortical preparations.15

I turn now to the performance of a network for
associative memory in the retrieval mode, assuming that
the learning cycle has been completed and the JtJ 's have
reached a given static limit. The performance is charac-
terized by several parameters. One is the capacity, that is,
the maximum number of memories that can be simulta-
neously stabilized in the network. The associative nature
of the recall is characterized by the sizes of the basins of at-
traction of the valleys corresponding to the memory states.
These basins are limited in size by the presence of other,
spurious attractors, which in the case of symmetric
networks are local minima of E other than the memory
states. The convergence times within the basins deter-
mine the speed of recall. Another important issue is the
robustness of the network to the presence of noise or to
failures of neurons and synapses. A theoretical analysis of
most of these issues is virtually impossible unless one
considers the thermodynamic limit, TV— oo, where answers
can be derived from a statistical mechanical investigation.
I discuss below two simple associative memory networks
that are based on the Hebb rules.

The Hopfield model
The Hopfield model consists of a network of two-state
neurons evolving according to the asynchronous dynamics
described above. It has an energy function of the form
given in equation 3, with symmetric connections given by
the Hebb rule (equation 4) and K] = 0. The memories are
assumed to be completely uncorrelated. They are there-
fore represented by quenched random vectors S'', each of
whose components can take the values + 1 with equal
probability.9

The statistical mechanical theory of the Hopfield
model, derived by Daniel Amit, Hanoch Gutfreund and
myself at the Hebrew University of Jerusalem, has
provided revealing insight into the workings of that
system and set the stage for quantitative studies of other
models of associative memory.16 The theory characterizes
the different phases of the system by the overlaps of the
states within each phase with the memories, given by

£ (5)

where S, is the state of the neuron i in that phase. All the
M'"s are of order 1/N"2 for a state that is uncorrelated
with the memories, whereas a Af for, say, /n = 2 is of

order unity if a state is strongly correlated with memory 2.
To understand why this model functions as associ-

ative memory, let us consider for a moment the casep = 1,
when there is only a single memory. Obviously, the states
S, = S] and S, = — S) are the ground states of E, since in
these states every bond energy — Jtj S^j has its mini-
mum possible value, — l/N. Thus, even though the </y's
are evenly distributed around zero, they are also spatially
correlated so that all the bonds can be satisfied, exactly as
happens in a pure ferromagnet. In a large system, adding
a few more uncorrelated patterns will not change the
global stability of the memories, since the energy contribu-
tion of the random interference between the patterns is
small. This expectation is corroborated by our theory. As
long as p remains finite as iV— oo, the network is
unsaturated. There are 2p degenerate ground states,
corresponding to the p memories and their spin-reversed
configurations. Even for small values of p, however, the
memories are not the only local minima. Other minima
exist, associated with states that strongly "mix" several
memories. These mixture states have a macroscopic value
(that is, of order unity) for more than one component Af.
Asp increases, the number of the mixture states increases
very rapidly with N. This decreases the memories' basins
of attraction and eventually leads to their destabilization.

A surprising outcome of the theory is that despite the
fact that the memory states become unstable if p > Nl
(2 \nN), the system provides useful associative memory
even when p increases in proportion to N. The random
noise generated by the overlaps among the patterns
destabilizes them, but new stable states appear, close to
the memories in the configuration space, as long as the
ratio a = p/N is below a critical value ac = 0.14. Memo-
ries can still be recalled for a < ac, but a small fraction of
the bits in the recall will be incorrect. The average
fraction of incorrect bits e, which is related to the overlap
with the nearest memory by e = (1 — MM2, is plotted in
figure 2. Note that e rises discontinuously to 0.5 at ac,
which signals the "catastrophic" loss of memory that
occurs when the number of stored memories exceeds the
critical capacity. The strong nonlinearity and the abun-
dance of feedback in the Hopfield model are the reasons
for this behavior.

Near saturation, when the ratio a is finite, the nature
of the spurious states is different from that in the
unsaturated case. Most of the states now are seemingly
random configurations that are only slightly biased in the
direction of the memories. The overlaps of these spurious
states with the memories are all of order 1/NU2. Their
statistical properties are similar to those of states in
infinite-range spin glasses.

A very important feature of the Hopfield model is the
appearance of distinct valleys near each of the memories,
even at nonzero temperatures. This implies that the
energy barriers surrounding these minima diverge with N,
and it also indicates that the memories have substantial
basins of attraction. The existence of memory phases
characterized by large overlaps with the memory states
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Associative memory circuit with a biologically plausible
architecture. The circuit consists of two neural populations:
excitatory neurons, which excite other neurons into the active state,
and inhibitory ones, which inhibit the activity of other neurons.
Information is encoded only in the connections between the
excitatory neurons. The synaptic matrix for the circuit is
asymmetric, and for appropriate values of the synaptic strengths and
thresholds, the circuit's dynamics might converge to oscillatory
orbits rather than to stable states. Figure 4

implies that small amounts of noise do not disrupt the
performance of the system entirely but do increase the
inaccuracy in the retrieval. The full phase diagram of the
model at finite a and T is shown in figure 3. The diagram
shows that accurate memory phases exist even when they
are not the global minima of E. This feature distinguishes
the model from those encountered in equilibrium statisti-
cal mechanics: For a system to be able to recall
associatively, its memory states must be robust local
minima having substantial basins of attraction, but they
do not necessarily have to be the true equilibrium states of
the system.

The Willshow model
From a biological point of view, the Hopfield model has
several important drawbacks. A basic feature of the
model is the symmetry of the connections, whereas the
synaptic connections in biological systems are usually
asymmetric. (I will elaborate on this issue later.) An-
other characteristic built into the Hopfield network is the
up-down, or S — — S, symmetry, which occurs naturally
in magnetic systems but not in biology. This symmetry
appears in the model in several aspects. For one, the
external magnetic fields, h° of equation 3, are set to zero,
and this may require fine tuning of the values of the
neuronal thresholds. More important, the memories
have to be completely random for the model to work,
implying that about half of the neurons are active in each
of the memory states. By contrast, the observed levels of
activity in the cortex17 are usually far below 50%. From
the point of view of memory storage as well, there are
advantages to sparse coding, in which only a small
fraction of the bits are + 1.

Another feature of the Hopfield model is that each
neuron sends out about an equal number of inhibitory and
excitatory connections, both having the same role in the
storage of information. This should be contrasted with the
fact that cortical neurons are in general either excitatory
or inhibitory. (An excitatory neuron when active excites
other neurons that receive synaptic input from it; an
inhibitory neuron inhibits the activity of its neighbors.)
Furthermore, the available experimental evidence for

Hebb-type synaptic modifications in biological systems so
far has demonstrated Hebb-type activity-dependent
changes only of excitatory synapses.15

An example of a model that has interesting biological
features is based on a proposal made by David Willshaw
some 20 years ago.18 Willshaw's proposal can be imple-
mented in a symmetric circuit of two-state neurons whose
dynamics are governed by the energy

E= -\ 2
where

N

(6)

(7)

where 0 (x) is 0 for x = 0 and 1 for x > 0. Thus the synapses
in this model have two possible values. A JtJ is 0 if neurons
i and j are simultaneously active in at least one of the
memory states, and it is — 1/N otherwise. The memories
are random except that the average fraction of active
neurons in each of the states S'' is given by a parameter f
that is assumed to be small. This model is suitable for stor-
ing patterns in which the fraction of active neurons is
small, particularly when f^Q in the thermodynamic limit.
These sparsely coded memories are perfectly recalled as
long as p < \n(Nf/\nN)/f2. The capacity of the Willshaw
model with sparse coding is far better than that of the
Hopfield model. There are circuits for sparse coding that
have a much greater capacity. For example, the capacity
in some is given by p < N/\f( — In /")].19

The learning algorithm implicit in equation 7 is
interesting in that it involves only enhancements of the
excitatory components of the synaptic interactions. The
inhibitory component is uniform, — 1/N in equation 7,
and its role is to suppress the activity of all neurons except
those with the largest excitatory fields. This ensures that
only the neutrons that are "on" in the memory state are
activated. Furthermore, the same effect can be achieved
by a model in which the inhibitory synaptic components
represent not direct synaptic interactions between the N
neurons of the circuit but indirect interactions mediated
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by other inhibitory neurons. This architecture, which is
illustrated in figure 4, is compatible with the known
architecture of cortical structures. Finally, information is
stored in this model in synapses that assume only two
values. This is desired because the analog depth of
synaptic strengths in the cortex is believed to be rather
small.

The two models discussed above serve as prototypes
for a variety of neural networks that use some form of the
Hebb rules in the design of the synaptic matrix. Most of
these models share the thermodynamic features described
above. In particular, at finite temperatures they already
have distinct memory phases; near saturation, the mem-
ory states are corrupted by small fractions of erroneous
bits, and spin glass states coexist with the memory states.
Toward the end of this article I will discuss other learning
strategies for associative memory.

Asymmetric synopses
The applicability of equilibrium statistical mechanics to
the dynamics of neural networks depends on the condition
that the synaptic connections are symmetric, that is,
J,j = Jj,. As I have already mentioned, real synaptic
connections are seldom symmetric. Actually, quite often
only one of the two bonds Jlt and J/t is nonzero. I should
also mention that the fully connected circuits, which have
abundant feedback, and the purely feedforward, layered
networks are two extreme idealizations of biological
systems, most of which have both a definite direction of in-
formation flow and substantial feedback. Models of
asymmetric circuits offer the possibility of studying such
mixed architectures.

Asymmetric circuits have a rich repertoire of possible
dynamic behaviors in addition to convergence onto a
stable state. The "mismatch" in the response of a
sequence of bonds when they are traversed in opposite
directions gives rise, in general, to time-dependent attrac-
tors. This time dependence might propagate coherently
along feedback loops, creating periodic or quasiperiodic
orbits, or it might lead to chaotic trajectories characterized
by continuous bands of spectral frequencies.

In asynchronous circuits, asymmetry plays a role in
the dynamics in several respects. At T = 0 , either the
trajectories converge to stable fixed points, as they do in
the symmetric case, or they wander chaotically in
configuration space. Whether the trajectories end in
stable fixed points or are chaotic is particularly important
in models of associative memory, where stable states
represent the results of the computational process. Sup-
pose one dilutes a symmetric network of Hebbian synap-
ses, such as that in equation 4, by cutting the directed
bonds at random, leaving only a fraction c of the bonds.
Asymmetry is generated at random in the cutting process
because a bond •J,l may be set to 0 while the reverse bond
Jj, is not. The result is an example of a network with spa-
tially unstructured asymmetry. Often one can model
unstructured asymmetry by adding spatially random
asymmetric synaptic components to an otherwise symmet-
ric circuit. In the above example, the resulting synaptic
matrix may be regarded as the sum of a symmetric part,
'/,, c, which is the same as that in equation 4, and a random

asymmetric part with a variance (pc(l — c))l/2/N.
Recent studies have shown that the trajectories of

large two-state networks with random asymmetry are
always chaotic, even at T= 0. This is because of the noise
generated dynamically by the asymmetric synaptic in-
puts. Although finite randomly asymmetric systems may
have some stable states, the time it takes to converge to
those states grows exponentially with the size of the
system, so that the states are2" inaccessible in finite time
as N~ oo. This nonconvergence of the flows in large
systems occurs as soon as the asymmetric contribution to
the local fields, even though small in magnitude, is a
finite fraction of the symmetric contribution as N— oo.
In the above example of cutting the directed bonds at
random, the dilution affects the dynamics in the thermo-
dynamic limit only if c is not greater, in order of
magnitude, than p/N.

The above discussion implies that the notion of
encoding information in stable states to obtain associative
memory is not valid in the presence of random asymmetry.
When the strength of the random asymmetric component
is reduced below a critical value, however, the dynamic
flows break into separate chaotic trajectories that are
confined to small regions around each of the memory
states. The amount of information that can be retrieved
from such a system depends on the amplitude of the
chaotic fluctuations, as well as on the amount of time
averaging that the external, "recalling," agent performs.

In contrast to the strictly random asymmetric synap-
ses I discussed above, asymmetric circuits with appropri-
ate correlations can have robust stable states at T = 0.
For instance, the learning algorithms of equation 10 (see
below), in general, produce asymmetric synaptic matrices.
Although the memory states are stable states of the
dynamics of these circuits, the asymmetry does affect the
circuits' performance in an interesting way. In regions of
configuration space far from the memories the asymmetry
generates an "effective" temperature that leads to nonsta-
tionary flows. When the system is in a state close to one of
the memories, by contrast, the correlations induced by the
learning procedure ensure that no such noise will appear.
That the behavior near the attractors representing the
memories is dynamically distinct from the behavior when
no memories are being recalled yields several computa-
tional advantages. For instance, a failure to recall a
memory is readily distinguished from a successful attempt
by the persistence of fluctuations in the network activity.

Coherent temporal patterns
When studying asymmetric circuits at T> 0 it is useful to
consider the phases of the system instead of individual
trajectories. Phases of asymmetric circuits at finite
temperatures are defined by the averages of dynamic
quantities over the stochastic noise as t — oo, where t is the
time elapsed since the initial condition. This definition
extends the notion of thermodynamic phases of symmetric
circuits. The phases of symmetric circuits are always
stationary, and the averages of dynamic quantities have a
well-defined static limit. By contrast, asymmetric systems
may exhibit phases that are time dependent even at
nonzero temperatures. The persistence of time depend-
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Periodic behavior of an asymmetric stochastic neural circuit of N inhibitory
and N excitatory neurons having the architecture shown in figure 4. In the
simulation, all connections between excitatory neurons had equal magnitude,
1 //v. The (excitatory) connections the excitatory neurons make with the
inhibitory neurons had strengths 0.75//V. The inhibitory neurons had
synapses only with the excitatory neurons, of strength 0.75/N. The "external
fields" were set to 0 and the dynamics was stochastic, with the probability
law given in equation 2. The neural circuit has stationary phases when
T> 0.5, and nonstationary, periodic phases at lower temperatures. Results
are shown for N = 200 at T = 0.3. The green curve shows the average
activity of the excitatory population (that is, the activity summed over all
excitatory neurons), the blue curve shows the corresponding result for the
inhibitory population. The slight departure from perfect oscillations is a
consequence of the finite size of the system. The instantaneous activity of
individual neurons is not periodic but fluctuates with time, as shown here
(orange) for one of the excitatory neurons in the circuit. Figure 5

ence even after averaging over the stochastic noise is a
cooperative effect. Often it can be described in terms of a
few nonlinearly coupled collective modes, such as the
overlaps of equation 5. Such time-dependent phases are
either periodic or chaotic. The attractor in the chaotic
case has a low dimensionality, like the attractors of
dynamical systems with a few degrees of freedom. The
time-dependent phases represent an organized, coherent
temporal behavior of the system that can be harnessed to
process temporal information. A phase characterized by
periodic motion is an example of the coherent temporal
behavior that asymmetric circuits may exhibit.

Figure 4 shows an example of an asymmetric circuit
that exhibits coherent temporal behavior. For appropri-
ate sets of parameters, such a circuit exhibits a bifurcation
at a critical value of T, such that its behavior is stationary
above Tc and periodic below it, as shown in figure 5.
Although the activities of single cells are fairly random in
such a circuit, the global activity—that is, the activity of a
macroscopic part of the circuit—consists of coherent
oscillations (see figure 5). The mechanism of oscillations
in the system is quite simple: The activity of the
excitatory neurons excites the inhibitory population,
which then triggers a negative feedback that turns off the

excitatory neurons causing their activity. Such a mecha-
nism for generation of periodic activity has been invoked
to account for the existence of oscillations in many real
nervous systems, including the cortex.

In general, the dynamical behavior should be more
complex than the simple oscillations described above for it
to be useful for interesting "computations." As in the case
of static patterns, appropriate learning rules must be used
to make sure that the complex dynamical patterns
represent the desired computational properties. An inter-
esting and important example of such learning rules are
those used for temporal association, in which the system
has to reconstruct associatively a temporally ordered
sequence of memories. Asymmetric circuits can represent
such a computation if their flows can be organized as a
temporally ordered sequence of rapid transitions between
quasistable states that represent the individual memories.
One can generate and organize such dynamical patterns
by introducing time delays into the synaptic responses.

In a simple model of temporal association the synaptic
matrix is assumed to consist of two parts. One is the
symmetric Hebb matrix of equation 4, with synapses with
a short response time. The quick response ensures that
the patterns S'' are stable for short periods of time. The
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other component encodes the temporal order of the
memories according to the equation

(8)

where the index /i denotes the temporal order. The
synaptic elements of this second component have a
delayed response so that they do not disrupt the recall of
the memories completely but induce transitions from the
quasistable state S'' to S ' ' + ' . The composite local fields at
time t are

where r is the delay time and A denotes the relative
strength of the delayed synaptic input. If A is smaller than
a critical value Ac, of order 1, then all the memories
remain stable. However, when A > Ac, the system will stay
in each memory only for a time of order r and then be driv-
en by the delayed inputs to the next memory. The flow
will terminate at the last memory in the sequence. If the
memories are organized cyclically, that is, if Sp = S \ then,
starting from a state close to one of the memories, the
system will exhibit a periodic motion, passing through all
the memories in each period. The same principle can be
used to embed several sequential or periodic flows in a
single network. It should be noted that the sharp delay
used in equation 9 is not unique. A similar effect can be
achieved by integrating the presynaptic activity over a
finite integration time T.

Circuits similar to those described above have been
proposed as models for neural control of rhythmic motor
outputs.14 Synapses with different response times can also
be used to form networks that recognize and classify
temporally ordered inputs, such as speech signals.
Whether biological systems use synapses with different
time courses to process temporal information is question-
able. Perhaps a more realistic possibility is that effective
delays in the propagation of neural activity are achieved
not by direct synaptic delays but by the interposition of
additional neurons in the circuit.

Learning, or exploring fhe space of synapses
So far I have focused on the dynamics of the neurons and
assumed that the synaptic connections and their strengths
are fixed in time. I now discuss some aspects of the
learning process, which determines the synaptic matrix.
Learning is relatively simple in associative memory: The
task is to organize the space of the states of the circuit in
compact basins around the "exemplar" states that are
known a priori. But in most perception and recognition
tasks the relationship between the input (or initial) and
the output (or final) states is more complex. Simple
learning rules, such as the Hebb rules, are not known for
these tasks. In some cases iterative error-correcting
learning algorithms have been devised. Many of these

algorithms can be formulated in terms of an energy
function defined on the configuration space of the synaptic
matrices. Synaptic strengths converge to the values
needed for the desired computational capabilities when
the energy function is minimized.

An illuminating example of this approach is its
implementation for associative memory by the late
Elizabeth Gardner and her coworkers in a series of
important studies of neural network theory.19 Instead of
using the Hebb rules, let us consider a learning mode in
which the J,/s are regarded as dynamical variables
obeying a relaxational dynamics with an appropriate
energy function. This energy is like a cost function that
embodies the set of constraints the synaptic matrices must
satisfy. Configurations of connections that satisfy all the
constraints have zero energy. Otherwise, the energy is
positive and its value is a measure of the violation of the
constraints. An example of such a function is

(10)

where the /i',"s, defined as in equation 1, are the local fields
of the memory state S'' and are thus linear functions of the
synaptic strengths.

Two interesting forms of V(x) are shown in figure 6,.
In one case the synaptic matrix has zero energy if the
generated local fields obey the constraint h'-S',' > K for all i
and n, where /<• is a positive constant. For the particular
case of K—0 the condition reduces to the requirement that
all the memories be stable states of the neural dynamics.
The other case represents the more stringent rquirement
h','S'' = K, which means that not only are the memories
stable but they also generate local fields with a given
magnitude K. In both cases K is defined using the
normalization that the diagonal elements of the square of
the synaptic matrix be unity.

One can use energy functions such as equation 10 in
conjunction with an appropriate relaxational dynamics to
construct interesting learning algorithms provided that
the energy surface in the space of connections is not too
rough. In the case of equation 10 there are no local
minima of E besides the ground states for reasonable
choices of V, such as the ones described above. Hence
simple gradient-descent dynamics, in which each step
decreases the energy function, is sufficient to guarantee
convergence to the desired synaptic matrix, that is, one
with zero E, if such a matrix exists. Indeed, such a
gradient-descent dynamics with the V(x) as in the first of
the two cases discussed above is similar to the perceptron
learning algorithm;3 the dynamics with the second choice
of V(x) is related to the Adaline learning algorithm.4

However, energy functions that are currently used for
learning in more complex computations are expected to
have complicated surfaces with many local minima, at
least in large networks. Hence the usefulness of applying
them together with gradient-descent dynamics in large-
scale problems is an important open problem.413
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Capacity of a network of N neurons when
random memories are stored by minimizing
the energy function of equation 10. The lines
mark the boundaries of the regions in the (K,O)
plane where synaptic matrices having zero
energy exist for the two choices (shown in the
inset) of the energy function in equation 10.
In one case (red) the energy function
constrains the local fields of the memory
states to be bigger than some constant K; in
the other case (blue), the local fields are
constrained to be equal to K. (a is the ratio
between the number p of stored memories
and N. The capacity in the limit N-+<x> is
shown.) The red line terminates at a = 2,
implying that the maximum number of
randomly chosen memories that can be
embedded as stable states in a large network
\sp = 2N. Figure 6

1.5

Formulating the problem of learning in terms of
energy functions provides a useful framework for its
theoretical investigation. One can then use the powerful
methods of equilibrium statistical mechanics to determine
the number and the statistical properties of connection
matrices satisfying the set of imposed constraints. For
instance, one can calculate the maximum number of
memories that can be embedded using function 10 for
different values of K. The results for random memories are
shown in figure 6. Valuable information concerning the
entropy and other properties of the solutions has also been
derived.19

In spite of the great interest in learning strategies of
the type described above, their usefulness as models for
learning in biology is questionable. To implement func-
tion 10 using relaxational dynamics, for example, either
all the patterns to be memorized must be presented
simultaneously or, if they are presented successively,
several, and often many, sessions of recycling through all
of them are needed before they are learned. Furthermore,
the separation in time between the learning phase and the
computational, or recall, phase, is artificial from a
biological perspective. Obviously, understanding the prin-
ciples of learning in biological systems remains one of the
major challenges of the field.

Optimization using neural circuits
Several tasks in pattern recognition can be formulated as
optimization problems, in which one searches for a state
that is the global minimum of a cost function. In some in-
teresting cases, the cost functions can be expressed as
energy functions of the form of equation 3, with appropri-
ate choices of the couplings Jtj and the fields h°. In this
formulation, the optimization task is equivalent to the
problem of finding the ground state of a highly frustrated

Ising system. The mapping of optimization problems onto
statistical mechanical problems has stirred up consider-
able research activity in both computer science and
statistical mechanics. Stochastic algorithms, known as
simulated annealing, have been devised that mimic the
annealing of physical systems by slow cooling.21 In
addition, analytical methods from spin-glass theory have
generated new results concerning the optimal values of
cost functions and how these values depend on the size of
the problem.10

Hopfield and David Tank have proposed the use of
deterministic analog neural circuits for solving optimiz-
ation problems.9 In analog circuits the state of a neuron is
characterized by a continuous variable S,, which can be
thought of as analgous to the instantaneous firing rate of a
real neuron. The dynamics of the circuits is given by
Aht /At = — dE/dS,, where h, is the local input to the tth
neuron. The energy E contains, in addition to the terms in
equation 3, local terms that ensure that the outputs S, are
appropriate sigmoid functions of their inputs h,. As in
models of associative memory, computation is achieved—
that is, the optimal solution is obtained—by a convergence
of the dynamics to an energy minimum. However, in
retrieving a memory one has partial information about
the desired state, and this implies that the initial state is
in the proximity of that state. In optimization problems
one does not have a clue about the optimum configuration;
one has to find the deepest valley starting from unbiased
configurations. It is thus not surprising that using two-
state circuits and the conventional zero-temperature
single-spin-flip dynamics to solve these problems is as
futile as attempting to equilibrate a spin glass after
quenching it rapidly to a low temperature. On the other
hand, simulations of the analog circuit equations on
several optimization problems, including small sizes of the
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famous "traveling salesman" problem, yielded "good"
solutions, typically in timescales on the order of a few time
constants of the circuit. These solutions usually are not
the optimal solutions but are much better than those
obtained by simple discrete algorithms.

What is the reason for the improved performance of
the analog circuits? Obviously, there is nothing in the
circuit's dynamics, which is the same as gradient descent,
that prevents convergence to a local minimum. Apparent-
ly, the introduction of continuous degrees of freedom
smooths the energy surface, thereby eliminating many of
the shallow local minima. However, the use of "contin-
uous" neurons is by itself unlikely to modify significantly
the high energy barriers, which it takes changes in the
states of many neurons to overcome. In light of this, one
may question the advantage of using analog circuits to
solve large-scale, hard optimization problems. From the
point of view of biological computation, however, a
relevant question is whether the less-than-optimal solu-
tions that these networks find are nonetheless acceptable.
Other crucial unresolved questions are how the perfor-
mance of these networks scales with the size of the
problem, and to what extent the performance depends on
fine-tuning the circuit's parameters.

Neural network theory and biology
Interest in neural networks stems from practical as well as
theoretical sources. Neural networks suggest novel archi-
tectures for computing devices and new methods for
learning. However, the most important goal of neural
network research is the advancement of the understand-
ing of the nervous system. Whether neural networks of
the types that are studied at present can compute
anything better than conventional digital computers has
yet to be shown. But they are certainly indispensable as
theoretical frameworks for understanding the operation of
real, large neural systems. The impact of neural network
research on neuroscience has been marginal so far. This
reflects, in part, the enormous gap between the present-
day idealized models and the biological reality. It is also
not clear to which level of organization in the nervous
system these models apply. Should one consider the whole
cortex, with its 10" or so neurons, as a giant neural
network? Or is a single neuron perhaps a large network of
many processing subunits?

Some physiological and anatomical considerations
suggest that cortical subunits of sizes on the order of 1
mm3 and containing about 105 neurons might be consid-
ered as relatively homogeneous, highly interconnected
functional networks. Such a subunit, however, cannot be
regarded as an isolated dynamical system. It functions as
part of a larger system and is strongly influenced by inputs
both from sensory stimuli and from other parts of the
cortex. Dynamical aspects pose additional problems. For
instance, persistent changes in firing activities during
performance of short-term-memory tasks have been mea-
sured. This is consistent with the idea of computation by
convergence to an attractor. However, the large fluctu-
ations in the observed activities and their relatively low
level are difficult to reconcile with simple-minded "conver-
gence to a stable state." More generally, we lack criteria
for distinguishing between functionally important biologi-
cal constraints and those that can be neglected. This is
particularly true for the dynamics. After all, the charac-
teristic time of perception is in some cases about one-tenth
of a second. This is only one hundred times the "micro-
scopic" neural time constant, which is about 1 or 2 msec.

To make constructive bridges with experimental
neurobiology, neural network theorists will have to focus
more attention on architectural and dynamical features of

specific biological systems. This undoubtedly will also
give rise to new ideas about the dynamics of neural
systems and the ways in which it may be cultivated to
perform computations. In the near future neural network
theories will hopefully make more predictions about
biological systems that will be concrete, nontrivial and
susceptible to experimental verification. Then the theo-
rists will indeed be making a contribution to the unravel-
ing of one of nature's biggest mysteries: the brain.

While preparing the article I enjoyed the kind hospitality of A T&T
Bell Labs. lam indebted to M. Abeles, P. Hohenberg, D. Kleinfeld
and N. Rubin for their valuable comments on the manuscript. My
research on neural networks has been partially supported by the
Fund for Basic Research, administered by the Israeli Academy of
Science and Humanities, and by the USA-Israel Binational
Science Foundation.
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