Learning Precisely Timed Spikes.

By elsc_admin
Created 5/11/2014
By elsc_admin May 11, 2014


Abstract:

To signal the onset of salient sensory features or execute well-timed motor sequences, neuronal circuits must transform streams of incoming spike trains into precisely timed firing. To address the efficiency and fidelity with which neurons can perform such computations, we developed a theory to characterize the capacity of feedforward networks to generate desired spike sequences. We find the maximum number of desired output spikes a neuron can implement to be 0.1-0.3 per synapse. We further present a biologically plausible learning rule that allows feedforward and recurrent networks to learn multiple mappings between inputs and desired spike sequences. We apply this framework to reconstruct synaptic weights from spiking activity and study the precision with which the temporal structure of ongoing behavior can be inferred from the spiking of premotor neurons. This work provides a powerful approach for characterizing the computational and learning capacities of single neurons and neuronal circuits.

Journal:
Neuron

Date Published:
2014 Apr 22

Custom 1:
Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

Source URL: https://elsc.huji.ac.il/sompolinsky/publications/learning-precisely-timed-spikes