Publications

Movement context modulates neuronal activity in motor and limbic-associative domains of the human parkinsonian subthalamic nucleus

The subthalamic nucleus (STN), a preferred target for treating movement disorders, has a crucial role in inhibition and execution of movement. To better understand the mechanism of movement regulation in the STN of Parkinson’s disease patients, we compared the same movement with different context, facilitation vs. inhibition context. We recorded subthalamic multiunit activity intra-operatively while parkinsonian patients (off medications, n = 43 patients, 173 recording sites) performed increasingly complex oddball paradigms with frequent and deviant tones: first, passive listening to tone series with no movement (‘None-Go’ task, n = 7, 28 recording sites); second, pressing a button after every tone (‘All-Go’ task, n = 7, 26 recording sites); and third, pressing a button only for frequent tones, thus adding inhibition of movement following deviant tones (‘Go-NoGo’ task, n = 29, 119 recording sites).

The STN responded mainly to movement-involving tasks. In the limbic-associative STN, evoked response to the deviant tone (inhibitory cue) was not significantly different between the Go-NoGo and the All-Go task. However, the evoked response to the frequent tone (go cue) in the Go-NoGo task was significantly reduced. The reduction was mainly prominent in the negative component of the evoked response amplitude aligned to the press. Successful movement inhibition was correlated with higher baseline activity.

We suggest that the STN in Parkinson’s disease patients adapts to movement inhibition context by selectively decreasing the amplitude of neuronal activity. Thus, the STN enables movement inhibition not by increasing responses to the inhibitory cue but by reducing responses to the release cue. The negative component of the evoked response probably facilitates movement and a higher baseline activity enables successful inhibition of movement. These discharge modulations were found in the ventromedial, non-motor domain of the STN and therefore suggest a significant role of the limbic- associative STN domains in movement planning and in global movement regulation.

Authors: Marmor O, Rappel P, Valsky D, Bick AS, Arkadir D, Linetzky E, Peled O, Tamir I, Bergman H, Israel Z, Eitan R
Year of publication: 2019
Journal: Neurobiology of Disease, 104716

Link to publication:

Labs:

“Working memory”