Descending Systems Translate Transient Cortical Commands into a Sustained Muscle Activation Signal.

By esc_admin
Created 11/13/2011
By esc_admin November 13, 2011


Abstract:

Controlling motor actions requires online adjustments of time-varying parameters. Although numerous studies have attempted to identify the parameters coded in different motor sites, the relationships between the temporal profile of neuronal responses and the dynamics of motor behavior remain poorly understood in particular because motor parameters such as force and movement direction often change over time. We studied time-dependent coding of cortical and spinal neurons in primates performing an isometric wrist task with an active hold period, which made it possible to segregate motor behavior into its phasic and sustained components. Here, we show that cortical neurons transiently code motor-related parameters when actively acquiring a goal, whereas spinal interneurons provide persistent information regarding maintained torque level and posture. Moreover, motor cortical neurons differed substantially from spinal neurons with regard to the evolvement of parameter-specific coding over the course of a trial. These results suggest that the motor cortex and spinal cord use different control policies: Cortical neurons produce transient motor commands governing ensuing actions, whereas spinal neurons exhibit sustained coding of ongoing motor states. Hence, motor structures downstream to M1 need to integrate cortical commands to produce state-dependent spinal firing.

Journal:
Cerebral cortex (New York, N.Y. : 1991)

Date Published:
2011 Sep 30

Custom 1:

UPCOMING EVENTS
Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

read more