ELSC Seminar - Prof. Gadi Goelman, Dec. 08, 2016 at 17:00

December 4, 2016 - December 9, 2016

Nonlinear coherences among multiple time-series: Use of MRI data to identify brain temporal organization and directionality of information flow

ELSC cordially invites you to the lecture given by:

Prof. Gadi Goelman

MRI Lab of the Human Biology Research Center, Hadassah Medical Center

On the topic of:

"Nonlinear coherences among multiple time-series: Use of MRI data to identify brain temporal organization and directionality of information flow"

The lecture will be held on Thursday December 8th, at 17:00

at ELSC: Silberman Bldg., 3rd Wing, 6th Floor,

Edmond J. Safra Campus

Light refreshments served at 16:45

Abstract:

Networks are advancing the field of neuroimaging. They are generally constructed from pairwise interactions with an assumption of linear relations between them. I will describe a novel high-order statistical framework to calculate interactions among multiple coupled time-series. Based on wavelet
analysis and spectral coherence, the mathematical expression for 4 time-series was derived and its validity and dependency on coupling strength and noise was tested by computer simulations of the Kuramoto model. The analysis enables to characterize quartets of time-series (i.e. brain regions) as \textit{linear}, nonlinear or of higher (>4) order networks. Phase delays between time-series are used to obtain network\textapos;s temporal hierarchy and to infer directionality of information flow. The analysis can be used in a variety of disciplines including fMRI, electrophysiology, EEG or MEG. I will demonstrate the analysis strength using resting-state fMRI data to show that the ventral visual system is composed of \textit{linear} networks and exhibits its known temporal hierarchy, while the motor system and the default mode network (DMN) are composed of nonlinear networks. The motor system exhibits \textit{center?out} hierarchy and the DMN has \textit{dorsal?ventral} and \textit{anterior?posterior} organizations. If time permitted, I will describe applications in fMRI hyperscanning data aiming to identify directionality of information flow during live social interactions.

Tags: \textcolor{blue}{Events 2016-2017 Seminars}

UPCOMING EVENTS

Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computatinal neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.