ELSC Seminar - Prof. Gadi Goelman, Dec. 08, 2016 at 17:00

December 4, 2016 - December 9, 2016

Nonlinear coherences among multiple time-series: Use of MRI data to identify brain temporal organization and directionality of information flow

ELSC cordially invites you to the lecture given by:

Prof. Gadi Goelman

MRI Lab of the Human Biology Research Center, Hadassah Medical Center

On the topic of:

"Nonlinear coherences among multiple time-series: Use of MRI data to identify brain temporal organization and directionality of information flow"

The lecture will be held on Thursday December 8th, at 17:00

at ELSC: Silberman Bldg., 3rd Wing, 6th Floor,

Edmond J. Safra Campus

Light refreshments served at 16:45

Abstract:

Networks are advancing the field of neuroimaging. They are generally constructed from pairwise interactions with an assumption of linear relations between them. I will describe a novel high-order statistical framework to calculate interactions among multiple coupled time-series. Based on wavelet
analysis and spectral coherence, the mathematical expression for 4 time-series was derived and its validity
and dependency on coupling strength and noise was tested by computer simulations of the Kuramoto
model. The analysis enables to characterize quartets of time-series (i.e. brain regions) as linear, nonlinear
or of higher (>4) order networks. Phase delays between time-series are used to obtain network's temporal
hierarchy and to infer directionality of information flow. The analysis can be used in a variety of disciplines
including fMRI, electrophysiology, EEG or MEG. I will demonstrate the analysis strength using resting-state
fMRI data to show that the ventral visual system is composed of linear networks and exhibits its known
temporal hierarchy, while the motor system and the default mode network (DMN) are composed of
nonlinear networks. The motor system exhibits center-out hierarchy and the DMN has dorsal?ventral
and anterior?posterior organizations. If time permitted, I will describe applications in fMRI
hypersacanning data aiming to identify directionality of information flow during live social interactions.

Tags: Events 2016-2017 Seminars

UPCOMING EVENTS

Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the
Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and
video articles.