An efficient coding theory for a dynamic trajectory predicts non-uniform allocation of entorhinal grid cells to modules

By yburak
Created 3/22/2017
By yburak March 22, 2017


Journal:
PLoS Computational Biology

Volume:
13

Issue:
6

Pagination:
e1005597

Date Published:
06/2017

UPCOMING EVENTS
Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more
The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

Source URL: https://elsc.huji.ac.il/burak/publications/efficient-coding-theory-dynamic-trajectory-predicts-non-uniform-allocation-entorh