Redundant dopaminergic activity may enable compensatory axonal sprouting in Parkinson disease.

By bergman
Created 8/25/2014
By bergman August 25, 2014


Abstract:
Neurodegenerative diseases become clinically apparent only after a substantial population of neurons is lost. This raises the possibility of compensatory mechanisms in the early phase of these diseases. The importance of understanding these mechanisms cannot be underestimated because it may guide future disease-modifying strategies. Because the anatomy and physiology of the nigrostriatal dopaminergic pathways have been well described, the study of Parkinson disease can offer insight into these early compensatory mechanisms. Collateral axonal sprouting of dopaminergic terminals into the denervated striatum is the most studied compensatory mechanism in animal (almost exclusively rodent) models of Parkinson disease and is correlated with behavioral recovery after partial lesions. This sprouting, however, does not respect the normal anatomy of the original nigrostriatal pathways and leads to aberrant neuronal networks. We suggest here that the unique physiologic property of the dopaminergic innervation of the striatum, namely redundancy of information encoding, is crucial to the efficacy of compensatory axonal sprouting in the presence of aberrant anatomical connections. Redundant information encoding results from the similarity of representation of salient and rewarding events by many dopaminergic neurons, from the wide axonal field of a single dopaminergic neuron in the striatum, and from the nonspecific spatial effect of dopamine on striatal neurons (volume conductance). Finally, we discuss the relevance of these findings in animal models to human patients with Parkinson disease.

Journal:
Neurology

Volume:
82

Issue:
12

Pagination:
1093-8
UPCOMING EVENTS

Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

read more

Source URL: https://elsc.huji.ac.il/bergman/publications/redundant-dopaminergic-activity-may-enable-compensatory-axonal-sprouting-parkin