A Computational Model of Implicit Memory Captures Dyslexics' Perceptual Deficits.

By ahissar
Created 9/8/2015
By ahissar September 8, 2015


Abstract:

Dyslexics are diagnosed for their poor reading skills, yet they characteristically also suffer from poor verbal memory and often from poor auditory skills. To date, this combined profile has been accounted for in broad cognitive terms. Here we hypothesize that the perceptual deficits associated with dyslexia can be understood computationally as a deficit in integrating prior information with noisy observations. To test this hypothesis we analyzed the performance of human participants in an auditory discrimination task using a two-parameter computational model. One parameter captures the internal noise in representing the current event, and the other captures the impact of recently acquired prior information. Our findings show that dyslexics' perceptual deficit can be accounted for by inadequate adjustment of these components; namely, low weighting of their implicit memory of past trials relative to their internal noise. Underweighting the stimulus statistics decreased dyslexics' ability to compensate for noisy observations. ERP measurements (P2 component) while participants watched a silent movie indicated that dyslexics' perceptual deficiency may stem from poor automatic integration of stimulus statistics. This study provides the first description of a specific computational deficit associated with dyslexia.

Journal:
The Journal of neuroscience : the official journal of the Society for Neuroscience

Volume:
35

Issue:
35

Pagination:
12116-26

Date Published:
2015 Sep 2

Custom 1:
ATTACHMENTS

• jaffe-dax_et_al._-2015_-
a_computational_model_of_implicit_memory_captures_dyslexics_perceptual_deficits-
_journal_of_neuroscience.pdf (1.61 MB)

UPCOMING EVENTS

Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

read more

Source URL: https://elsc.huji.ac.il/ahissar/publications/computational-model-implicit-memory-captures-dyslexics-perceptual-deficits