Early multisensory integration of self and source motion in the auditory system.

By esc_admin

Created 9/15/2016

By esc_admin September 15, 2016


Abstract:

Discriminating external from self-produced sensory inputs is a major challenge for brains. In the auditory system, sound localization must account for movements of the head and ears, a computation likely to involve multimodal integration. Principal neurons (PNs) of the dorsal cochlear nucleus (DCN) are known to be spatially selective and to receive multimodal sensory information. We studied the responses of PNs to body rotation with or without sound stimulation, as well as to sound source rotation with stationary body. We demonstrated that PNs are sensitive to head direction, and, in the presence of sound, they differentiate between body and sound source movement. Thus, the output of the DCN provides the brain with enough information to disambiguate the movement of a sound source from an acoustically identical relative movement produced by motion of the animal.

Journal:
Proceedings of the National Academy of Sciences of the United States of America

Volume:
113

Issue:
29

Pagination:
8308-13

Date Published:
2016 Jul 19

Custom 1:
It is now widely accepted that deciphering the enigma of the brain is the most challenging intellectual endeavor of the 21st century, "The Century of the Brain" - Join our quest and become a friend of ELSC.

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.