Blood?brain barrier dysfunction?induced inflammatory signaling in brain pathology and epileptogenesis

By soreq
Created 1/13/2013
By soreq January 13, 2013

Abstract:
The protection of the brain from blood-borne toxins, proteins, and cells is critical to the brain?s normal function. Accordingly, a compromise in the blood?brain barrier (BBB) function accompanies many neurologic disorders, and is tightly associated with brain inflammatory processes initiated by both infiltrating leukocytes from the blood, and activation of glial cells. Those inflammatory processes contribute to determining the severity and prognosis of numerous neurologic disorders, and can both cause, and result from BBB dysfunction. In this review we examine the role of BBB and inflammatory responses, in particular activation of transforming grown factor ? (TGF?) signaling, in epilepsy, stroke, and Parkinson?s disease.

Journal:
Epilepsia

Volume:
53

Pagination:
37?44

ELSC Friends
It is now widely accepted that deciphering the enigma of the brain is the most challenging intellectual endeavor of the 21st century, "The Century of the Brain" - Join our quest and become a friend of ELSC.

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

Source URL: http://elsc.huji.ac.il/soreq/publications/blood%E2%80%93brain-barrier-dysfunction%E2%80%93induced-inflammantory-signaling-brain-pathology-an