Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity

By sompolinsky
Created 1/21/2011
By sompolinsky January 21, 2011

Abstract:

Triggered by recent experimental results, temporally asymmetric Hebbian \(\{\text{TAH}\}\) plasticity is considered as a candidate model for the biological implementation of competitive synaptic learning, a key concept for the experience-based development of cortical circuitry. However, because of the well known positive feedback instability of correlation-based plasticity, the stability of the resulting learning process has remained a central problem. Plagued by either a runaway of the synaptic efficacies or a greatly reduced sensitivity to input correlations, the learning performance of current models is limited. Here we introduce a novel generalized nonlinear \(\{\text{TAH}\}\) learning rule that allows a balance between stability and sensitivity of learning. Using this rule, we study the capacity of the system to learn patterns of correlations between afferent spike trains. Specifically, we address the question of under which conditions learning induces spontaneous symmetry breaking and leads to inhomogeneous synaptic distributions that capture the structure of the input correlations. To study the efficiency of learning temporal relationships between afferent spike trains through \(\{\text{TAH}\}\) plasticity, we introduce a novel sensitivity measure that quantifies the amount of information about the correlation structure in the input, a learning rule capable of storing in the synaptic weights. We demonstrate that by adjusting the weight dependence of the synaptic changes in \(\{\text{TAH}\}\) plasticity, it is possible to enhance the synaptic representation of temporal input correlations while maintaining the system in a stable learning regime. Indeed, for a given distribution of inputs, the learning efficiency can be optimized.

Journal:
The Journal of Neuroscience: The Official Journal of the Society for Neuroscience

Volume:
23

Pagination:
3697?3714

Notes:

{PMID:} 12736341

Full Text:
UPCOMING EVENTS

Learn more about our exciting upcoming events!

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

read more

Source URL: http://elsc.huji.ac.il/sompolinsky/publications/learning-input-correlations-through-nonlinear-temporally-asymmetric-hebbian