Adaptation and information transmission in fly motion detection

By sompolinsky
Created 1/21/2011
By sompolinsky January 21, 2011

Abstract:

In this work, we studied the adaptation of H1, a motion-sensitive neuron in the fly visual system, to the variance of randomly fluctuating velocity stimuli. We ask two questions. 1) Which components of the motion detection system undergo genuine adaptational changes in response to the variance of the fluctuating velocity signal? 2) What are the consequences of this adaptation for the information processing capabilities of the neuron? To address these questions, we characterized the adaptation of H1 by estimating the changes in the parameters of an associated Reichardt motion detection model under various stimulus conditions. The strongest stimulus dependence was exhibited by the temporal kernel of the motion detector and was parametrized by changes in the model's high-pass time constant \(\tau_{H} \). This time constant shortened considerably with increasing velocity fluctuations. We showed that this adaptive process contributes significantly to the shortening of the velocity response time-course but not to velocity gain control. To assess the contribution of time-constant adaptation to information transmission, we compared the information rates generated by our adaptive model motion detector with model simulations in which \(\tau_{H} \) was held fixed at its unadapted value for all stimulus conditions. We found that for intermediate stimulus conditions, fixing \(\tau_{H} \) at its unadapted value led to higher information rates, suggesting that time-constant adaptation does not optimize total information rates about velocity trajectories. We also found that, over the wide range of stimulus conditions tested here, H1 information rates are dependent on the amplitude of velocity fluctuations.

Journal:
J Neurophysiol

Volume:
98

Pagination:
3309?3320

Date Published:
12/2007

Notes:
{PMID:} 17928564
ELSC Friends

It is now widely accepted that deciphering the enigma of the brain is the most challenging intellectual endeavor of the 21st century, "The Century of the Brain" - Join our quest and become a friend of ELSC.

read more

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

read more

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

read more

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

read more