Maturation of escape circuit function during the early adulthood of cockroaches Periplaneta americana.

By lcohen
Created 5/11/2011
By lcohen May 11, 2011

Abstract:

During postembryonic development of insects, sensorimotor pathways, which generate specific behaviors, undergo maturational changes. It is less clear whether such pathways are typically stable, or undergo further maturation, during the adult stage. In the present study, we have examined this issue by multilevel analysis of a simple model system, the escape behavior of the cockroach, from identified synapses to behavior. We show that the escape system is highly responsive immediately after the molt to adulthood, but that the latency of escape responses was not at its typical value immediately after the molt to adult. The latency of escape behavior increased over the first 30 days of adult life, perhaps indicating maturational adjustments of the escape sensorimotor pathway. The first station in the escape circuitry is the synaptic connections between the cercal wind receptors and the giant interneurons. We measured unitary excitatory synaptic potentials between single sensory neurons and an identified giant interneuron (GI(2)). We found a decrease in the synaptic strength between identified cercal hairs from a single column and GI(2) over the first month after the adult molt. Consequently, the latency and the number of action potentials of GI(2) in response to natural stimuli increased and decreased respectively during this time. Thus, we show that both behavioral performance and the wind sensitivity of GI(2) decreased over the first month after molt. We conclude that the cockroach escape system undergoes further sensorimotor maturation over a period of 1 month, and that cellular changes correlate with, or predict, some changes in behavioral performance.

Journal: Journal of neurobiology

Volume: 62

Issue: 1

Pagination: 62-71

Date Published:
2005 Jan

Custom 1:

UPCOMING EVENTS

Learn more about our exciting upcoming events!

[Read more](#)

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

[Read more](#)

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

[Read more](#)

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

[Read more](#)