g-Ratio weighted imaging of the human spinal cord in vivo.

By elsc_admin
Created 9/29/2016
By elsc_admin September 29, 2016


Abstract:

The myelin g-ratio is defined as the ratio of the inner to the outer diameter of the myelin sheath. This ratio provides a measure of the myelin thickness that complements axon morphology (diameter and density) with high specificity for assessment of demyelination in diseases such as multiple sclerosis. Previous work has shown that an aggregate g-ratio map can be computed using a formula that combines axon and myelin density measured with quantitative MRI. In this work, we computed g-ratio weighted maps in the cervical spinal cord of nine healthy subjects. We utilized the 300 mT/m gradients from the CONNECTOM scanner for estimating the fraction of restricted water (fr) with high accuracy using the CHARMED model. Myelin density was estimated using the lipid and macromolecular tissue volume (MTV) method, derived from normalized proton density (PD) mapping. The variability across spinal level, laterality and subject were assessed using a three-way ANOVA. The average g-ratio value obtained in the white matter was 0.76 +/- 0.03, consistent with previous histology work. Coefficients of variation of fr and MTV were respectively 4.3% and 13.7%. fr and myelin density were significantly different across spinal tracts (p = 3x10(-7) and 0.004 respectively) and were positively correlated in the white matter (r = 0.42), suggesting shared microstructural information. The g-ratio did not show significant differences across tracts (p=0.6). This study suggests that fr and myelin density can be measured in vivo with high precision and that they can be combined to produce a map robust to free water pool contamination such as cerebrospinal fluid or veins and weighted by the myelin g-ratio. Potential applications include the study of early demyelination in multiple sclerosis and the quantitative assessment of remyelination drugs.

Journal:
NeuroImage

Date Published:
2016 Sep 21

Custom 1:

It is now widely accepted that deciphering the enigma of the brain is the most challenging intellectual endeavor of the 21st century, "The Century of the Brain" - Join our quest and become a friend of ELSC.

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.

Source URL: http://elsc.huji.ac.il/mezer/publications/g-ratio-weighted-imaging-human-spinal-cord-vivo