Prof. Leon Deouell

Human Intracranial recordings link suppressed transients rather than 'filling-in' to perceptual continuity across blinks.

Golan, T, Davidesco I, Meshulam M, Groppe DM, Mégevand P, Yeagle EM, Goldfinger MS, Harel M, Melloni L, Schroeder CE, Deouell LY, Mehta AD, Malach R.  2016.  

Abstract:

We hardly notice our eye blinks, yet an externally generated retinal interruption of a similar duration is perceptually salient. We examined the neural correlates of this perceptual distinction using intracranially measured ECoG signals from human visual cortex in 14 patients. In early visual areas (V1 and V2), the disappearance of the stimulus due to either invisible blinks or salient blank video frames ('gaps') led to a similar drop in activity level, followed by a positive overshoot beyond baseline, triggered by stimulus reappearance. Ascending the visual hierarchy, the reappearance-related overshoot gradually subsided for blinks but not for gaps. By contrast, the disappearance-related drop did not follow the perceptual distinction - it was actually slightly more pronounced for blinks than for gaps. These findings suggest that blinks' limited visibility compared with gaps is correlated with suppression of blink-related visual activity transients, rather than with 'filling-in' of the occluded content during blinks.

Journal:

eLife

Volume:

5

Date Published:

2016 Sep 29

Custom 1:

http://www.ncbi.nlm.nih.gov/pubmed/27685352?dopt=Abstract

Web Sites: