Hierarchy of prediction errors for auditory events in human temporal and frontal cortex.

By elsc_admin
Created 9/15/2016
By elsc_admin September 15, 2016

Abstract:

Predictive coding theories posit that neural networks learn statistical regularities in the environment for comparison with actual outcomes, signaling a prediction error (PE) when sensory deviation occurs. PE studies in audition have capitalized on low-frequency event-related potentials (LF-ERPs), such as the mismatch negativity. However, local cortical activity is well-indexed by higher-frequency bands [high-band (H?): 80-150 Hz]. We compared patterns of human H? and LF-ERPs in deviance detection using electrocorticographic recordings from subdural electrodes over frontal and temporal cortices. Patients listened to trains of task-irrelevant tones in two conditions differing in the predictability of a deviation from repetitive background stimuli (fully predictable vs. unpredictable deviants). We found deviance-related responses in both frequency bands over lateral temporal and inferior frontal cortex, with an earlier latency for H? than for LF-ERPs. Critically, frontal H? activity but not LF-ERPs discriminated between fully predictable and unpredictable changes, with frontal cortex sensitive to unpredictable events. The results highlight the role of frontal cortex and H? activity in deviance detection and PE generation.

Journal:
Proceedings of the National Academy of Sciences of the United States of America

Volume:
113

Issue:
24

Pagination:
6755-60

Date Published:
2016 Jun 14

Custom 1:
It is now widely accepted that deciphering the enigma of the brain is the most challenging intellectual endeavor of the 21st century, "The Century of the Brain" - Join our quest and become a friend of ELSC.

ELSC Friends

Studying at ELSC

Our Int'l Ph.D. program provides outstanding students with top-notch courses in computational neuroscience.

The Building

The Jerusalem Brain Sciences Building will provide a state-of-the-art research and teaching facility for the Edmond and Lily Safra Center for Brain Sciences.

ELSC Media Channel

Get into our media channel and investigate ELSC's latest videos: seminars, public lectures, courses and video articles.